These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 6928689)
41. Study of the time-resolved tryptophan fluorescence of crystalline alpha-chymotrypsin. Desie G; Boens N; De Schryver FC Biochemistry; 1986 Dec; 25(25):8301-8. PubMed ID: 3814586 [TBL] [Abstract][Full Text] [Related]
42. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611 [TBL] [Abstract][Full Text] [Related]
43. A type II DNA-binding protein genetically engineered for fluorescence spectroscopy: the "arm" of transcription factor 1 binds in the DNA grooves. Härd T; Sayre MH; Geiduschek EP; Kearns DR Biochemistry; 1989 Apr; 28(7):2813-9. PubMed ID: 2742813 [TBL] [Abstract][Full Text] [Related]
44. Photophysics of ANS. I. Protein-ANS complexes: Intestinal fatty acid binding protein and single-trp mutants. Klimtchuk E; Venyaminov S; Kurian E; Wessels W; Kirk W; Prendergast FG Biophys Chem; 2007 Jan; 125(1):1-12. PubMed ID: 16978762 [TBL] [Abstract][Full Text] [Related]
45. Activity and spectroscopic properties of bacterial D-amino acid transaminase after multiple site-directed mutagenesis of a single tryptophan residue. Martínez del Pozo A; Merola M; Ueno H; Manning JM; Tanizawa K; Nishimura K; Asano S; Tanaka H; Soda K; Ringe D Biochemistry; 1989 Jan; 28(2):510-6. PubMed ID: 2713327 [TBL] [Abstract][Full Text] [Related]
46. The mechanism of quenching of liver alcohol dehydrogenase fluorescence due to ternary complex formation. Laws WR; Shore JD J Biol Chem; 1978 Dec; 253(23):8593-7. PubMed ID: 711768 [TBL] [Abstract][Full Text] [Related]
47. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
48. Stereoselectivity of Electron and Energy Transfer in the Quenching of ( Ageeva AA; Babenko SV; Magin IM; Plyusnin VF; Kuznetsova PS; Stepanov AA; Vasilevsky SF; Polyakov NE; Doktorov AB; Leshina TV Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32731624 [TBL] [Abstract][Full Text] [Related]
49. The effect of resonance energy homotransfer on the intrinsic tryptophan fluorescence emission of the bothropstoxin-I dimer. de Oliveira AH; Giglio JR; Andrião-Escarso SH; Ward RJ Biochem Biophys Res Commun; 2001 Jun; 284(4):1011-5. PubMed ID: 11409896 [TBL] [Abstract][Full Text] [Related]
50. Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy. Zhu W; Becker DF Biochemistry; 2005 Sep; 44(37):12297-306. PubMed ID: 16156643 [TBL] [Abstract][Full Text] [Related]
51. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy. Jia M; Yi H; Chang M; Cao X; Li L; Zhou Z; Pan H; Chen Y; Zhang S; Xu J J Photochem Photobiol B; 2015 Aug; 149():243-8. PubMed ID: 26111991 [TBL] [Abstract][Full Text] [Related]
52. Excited-state interactions in flurbiprofen-tryptophan dyads. Vayá I; Jiménez MC; Miranda MA J Phys Chem B; 2007 Aug; 111(31):9363-71. PubMed ID: 17608516 [TBL] [Abstract][Full Text] [Related]
53. Azapeptides as inhibitors and active site titrants for cysteine proteinases. Xing R; Hanzlik RP J Med Chem; 1998 Apr; 41(8):1344-51. PubMed ID: 9548822 [TBL] [Abstract][Full Text] [Related]
54. Correlation of tryptophan fluorescence spectral shifts and lifetimes arising directly from heterogeneous environment. Pan CP; Muiño PL; Barkley MD; Callis PR J Phys Chem B; 2011 Mar; 115(12):3245-53. PubMed ID: 21370844 [TBL] [Abstract][Full Text] [Related]
55. Intracavitary ligand distribution in tear lipocalin by site-directed tryptophan fluorescence. Gasymov OK; Abduragimov AR; Glasgow BJ Biochemistry; 2009 Aug; 48(30):7219-28. PubMed ID: 19586017 [TBL] [Abstract][Full Text] [Related]
56. Use of hybridization for distance measurement by fluorescence energy transfer in oligomeric proteins: distance between two functional sites in aspartase. Murase S; Kawata Y; Yumoto N Biochem Biophys Res Commun; 1993 Sep; 195(3):1159-64. PubMed ID: 8216244 [TBL] [Abstract][Full Text] [Related]
57. Distance mapping in proteins using fluorescence spectroscopy: tyrosine, like tryptophan, quenches bimane fluorescence in a distance-dependent manner. Jones Brunette AM; Farrens DL Biochemistry; 2014 Oct; 53(40):6290-301. PubMed ID: 25144569 [TBL] [Abstract][Full Text] [Related]
58. Evidence for tryptophan in proximity to histidine and cysteine as essential to the active site of an alkaline protease. Tanksale AM; Vernekar JV; Ghatge MS; Deshpande VV Biochem Biophys Res Commun; 2000 Apr; 270(3):910-7. PubMed ID: 10772924 [TBL] [Abstract][Full Text] [Related]
59. Probing ligand binding to thromboxane synthase. Chao WC; Lu JF; Wang JS; Yang HC; Pan TA; Chou SC; Wang LH; Chou PT Biochemistry; 2013 Feb; 52(6):1113-21. PubMed ID: 23327333 [TBL] [Abstract][Full Text] [Related]
60. Mechanistic investigation of peptidylglycine alpha-hydroxylating monooxygenase via intrinsic tryptophan fluorescence and mutagenesis. Bell J; El Meskini R; D'Amato D; Mains RE; Eipper BA Biochemistry; 2003 Jun; 42(23):7133-42. PubMed ID: 12795609 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]