These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 6929551)
1. Right and left eye bands in frogs with unilateral tectal ablations. Law MI; Constantine-Paton M Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2314-8. PubMed ID: 6929551 [TBL] [Abstract][Full Text] [Related]
2. Eye-specific termination bands in tecta of three-eyed frogs. Constantine-Paton M; Law MI Science; 1978 Nov; 202(4368):639-41. PubMed ID: 309179 [TBL] [Abstract][Full Text] [Related]
3. Anatomy and physiology of experimentally produced striped tecta. Law MI; Constantine-Paton M J Neurosci; 1981 Jul; 1(7):741-59. PubMed ID: 6980968 [TBL] [Abstract][Full Text] [Related]
4. Pre- and postsynaptic correlates of interocular competition and segregation in the frog. Constantine-Paton M; Ferrari-Eastman P J Comp Neurol; 1987 Jan; 255(2):178-95. PubMed ID: 3493268 [TBL] [Abstract][Full Text] [Related]
6. A banded distribution of retinal afferents within layer 9A of the normal frog optic tectum. Law MI; Constantine-Paton M Brain Res; 1982 Sep; 247(2):201-8. PubMed ID: 7127123 [TBL] [Abstract][Full Text] [Related]
7. On the formation of eye dominance stripes and patches in the doubly-innervated optic tectum of the chick. Fawcett JW; Cowan WM Brain Res; 1985 Jan; 349(1-2):147-63. PubMed ID: 3986583 [TBL] [Abstract][Full Text] [Related]
8. Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions. Gaze RM; Fawcett JW J Embryol Exp Morphol; 1983 Feb; 73():17-38. PubMed ID: 6875457 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number. Norden JJ; Constantine-Paton M J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258 [TBL] [Abstract][Full Text] [Related]
10. Retinal projection in a non-visual area after bilateral tectal ablation in goldfish. Sharma SC Nature; 1981 May; 291(5810):66-7. PubMed ID: 7231524 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets. Cantore WA; Scalia F J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955 [TBL] [Abstract][Full Text] [Related]
12. Rearrangements of the retinotectal projection in Rana pipiens after unilateral caudal half-tectum ablation. Udin SB J Comp Neurol; 1977 Jun; 173(3):561-82. PubMed ID: 300744 [TBL] [Abstract][Full Text] [Related]
13. The role of visual experience in the formation of binocular projections in frogs. Udin SB Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495 [TBL] [Abstract][Full Text] [Related]
14. Retinotectal synapses formed by ipsilaterally projecting fibers in the doubly innervated goldfish tectum. Airhart MJ; Norden JJ Brain Res; 1985 Jan; 325(1-2):307-12. PubMed ID: 3978423 [TBL] [Abstract][Full Text] [Related]
15. Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus. Straznicky C; Tay D J Embryol Exp Morphol; 1981 Dec; 66():159-74. PubMed ID: 7338709 [TBL] [Abstract][Full Text] [Related]
16. Retinotectal map formation in dually innervated tecta: a regeneration study in Xenopus with one compound eye following bilateral optic nerve section. Straznicky C; Tay D J Comp Neurol; 1982 Apr; 206(2):119-30. PubMed ID: 7085924 [TBL] [Abstract][Full Text] [Related]
17. Mapping retinal projections from double nasal and double temporal compound eyes to dually innervated tectum in Xenopus. Straznicky C Brain Res; 1981 Apr; 227(2):139-52. PubMed ID: 7225884 [TBL] [Abstract][Full Text] [Related]
18. Abnormal visual input leads to development of abnormal axon trajectories in frogs. Udin SB Nature; 1983 Jan; 301(5898):336-8. PubMed ID: 6823306 [TBL] [Abstract][Full Text] [Related]
19. Ipsilateral retinofugal projections in a percomorph bony fish: their experimental induction, specificity and maintenance. Wilm C; Fritzsch B Brain Behav Evol; 1990; 36(5):271-99. PubMed ID: 2285855 [TBL] [Abstract][Full Text] [Related]
20. Differences between embryos and adults in the plasticity of somatosensory afferents to the axolotl tectum. Harris WA Brain Res; 1983 Apr; 283(2-3):245-55. PubMed ID: 6850352 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]