These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Active site structural features for chemically modified forms of rhodanese. Gliubich F; Gazerro M; Zanotti G; Delbono S; Bombieri G; Berni R J Biol Chem; 1996 Aug; 271(35):21054-61. PubMed ID: 8702871 [TBL] [Abstract][Full Text] [Related]
26. A reexamination of the postulated charge transfer interactions at the active site of the enzyme rhodanese. Baillie RD; Horowitz PM Biochim Biophys Acta; 1976 Apr; 429(2):402-8. PubMed ID: 130934 [TBL] [Abstract][Full Text] [Related]
27. The effect of sodium tetrathionate on cyanide conversion to thiocyanate by enzymatic and non-enzymatic mechanisms. Baskin SI; Kirby SD J Appl Toxicol; 1990 Oct; 10(5):379-82. PubMed ID: 2254590 [TBL] [Abstract][Full Text] [Related]
28. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent. Nishino T; Usami C; Tsushima K Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1826-9. PubMed ID: 6572944 [TBL] [Abstract][Full Text] [Related]
29. The inactivation of rhodanese by nitrite and inhibition by other anions in vitro. Alexander K; Procell LR; Kirby SD; Baskin SI J Biochem Toxicol; 1989; 4(1):29-33. PubMed ID: 2769694 [TBL] [Abstract][Full Text] [Related]
30. In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes. Leung P; Cannon EP; Petrikovics I; Hawkins A; Way JL Toxicol Appl Pharmacol; 1991 Sep; 110(2):268-74. PubMed ID: 1891774 [TBL] [Abstract][Full Text] [Related]
31. Interaction of rhodanese with intermediates of oxygen reduction. Cannella C; Berni R FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631 [TBL] [Abstract][Full Text] [Related]
33. Nonfunctional nature of sulfhydryl groups for pigeon liver malic enzyme. Chang GG; Chueh SH Int J Pept Protein Res; 1980 Oct; 16(4):321-6. PubMed ID: 7461912 [TBL] [Abstract][Full Text] [Related]
34. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis. Horowitz P; Criscimagna NL J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of the catalytic activity of rhodanese by S-nitrosylation using nitric oxide donors. Kwiecień I; Sokołowska M; Luchter-Wasylewska E; Włodek L Int J Biochem Cell Biol; 2003 Dec; 35(12):1645-57. PubMed ID: 12962704 [TBL] [Abstract][Full Text] [Related]
36. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state. Lijk LJ; Kalk KH; Brandenburg NP; Hol WG Biochemistry; 1983 Jun; 22(12):2952-7. PubMed ID: 6575830 [TBL] [Abstract][Full Text] [Related]
37. Spectral studies of the tryptophan exposure in the enzyme rhodanese. Guido K; Baillie RD; Horowitz PM Biochim Biophys Acta; 1976 Apr; 427(2):600-7. PubMed ID: 1268221 [TBL] [Abstract][Full Text] [Related]
38. Methods for in situ visualization and assay of sulfurtransferases. Aird BA; Lane J; Westley J Anal Biochem; 1987 Aug; 164(2):554-8. PubMed ID: 3479029 [TBL] [Abstract][Full Text] [Related]
39. The structure of bovine liver rhodanese. II. The active site in the sulfur-substituted and the sulfur-free enzyme. Ploegman JH; Drent G; Kalk KH; Hol WG J Mol Biol; 1979 Jan; 127(2):149-62. PubMed ID: 430559 [No Abstract] [Full Text] [Related]