These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 6933552)
1. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
2. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS; Schachman HK J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547 [TBL] [Abstract][Full Text] [Related]
3. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]
4. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains. Johnson RS; Schachman HK Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418 [TBL] [Abstract][Full Text] [Related]
5. Three of the six possible intersubunit stabilizing interactions involving Glu-239 are sufficient for restoration of the homotropic and heterotropic properties of Escherichia coli aspartate transcarbamoylase. Sakash JB; Chan RS; Tsuruta H; Kantrowitz ER J Biol Chem; 2000 Jan; 275(2):752-8. PubMed ID: 10625604 [TBL] [Abstract][Full Text] [Related]
7. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
8. 19F nuclear magnetic resonance studies of communication between catalytic and regulatory subunits in aspartate transcarbamoylase. Wacks DB; Schachman HK J Biol Chem; 1985 Sep; 260(21):11659-62. PubMed ID: 4044575 [TBL] [Abstract][Full Text] [Related]
9. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase. Subramani S; Bothwell MA; Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3777-81. PubMed ID: 333446 [TBL] [Abstract][Full Text] [Related]
10. Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains. Johnson RS; Schachman HK J Biol Chem; 1983 Mar; 258(6):3528-38. PubMed ID: 6833212 [TBL] [Abstract][Full Text] [Related]
11. Properties of hybrid aspartate transcarbamoylase formed with native subunits from divergent bacteria. Shanley MS; Foltermann KF; O'Donovan GA; Wild JR J Biol Chem; 1984 Oct; 259(20):12672-7. PubMed ID: 6386799 [TBL] [Abstract][Full Text] [Related]
12. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. Suter P; Rosenbusch JP J Biol Chem; 1977 Nov; 252(22):8136-41. PubMed ID: 334776 [TBL] [Abstract][Full Text] [Related]
13. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
14. Shared active sites in oligomeric enzymes: model studies with defective mutants of aspartate transcarbamoylase produced by site-directed mutagenesis. Wente SR; Schachman HK Proc Natl Acad Sci U S A; 1987 Jan; 84(1):31-5. PubMed ID: 3540957 [TBL] [Abstract][Full Text] [Related]
15. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related]
16. Catalytic-regulatory subunit interactions and allosteric effects in aspartate transcarbamylase. Ladjimi MM; Kantrowitz ER J Biol Chem; 1987 Jan; 262(1):312-8. PubMed ID: 3539935 [TBL] [Abstract][Full Text] [Related]
17. Quaternary constraint in hybrid of aspartate transcarbamylase containing wild-type and mutant catalytic subunits. Gibbons I; Flatgaard JE; Schachman HK Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4298-302. PubMed ID: 1105578 [TBL] [Abstract][Full Text] [Related]
18. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
19. Heterotropic effectors promote a global conformational change in aspartate transcarbamoylase. Eisenstein E; Markby DW; Schachman HK Biochemistry; 1990 Apr; 29(15):3724-31. PubMed ID: 2187530 [TBL] [Abstract][Full Text] [Related]
20. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]