These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6934556)

  • 1. The effect of varying doses of d-amphetamine on activity levels of prepubertal mice.
    Cytryn AS
    Psychiatry Res; 1980 Sep; 3(1):41-51. PubMed ID: 6934556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of scopolamine and d-amphetamine on locomotor activity before and after shock: a diallel analysis in mice.
    Anisman H
    Psychopharmacology (Berl); 1976 Jul; 48(2):165-73. PubMed ID: 826929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and ontogenetic variations in locomotor activity following treatment with scopolamine or d-amphetamine.
    Remington G; Anisman H
    Dev Psychobiol; 1976 Nov; 9(6):579-85. PubMed ID: 1001843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain differences in lithium attenuation of d-amphetamine-induced hyperlocomotion: a mouse model for the genetics of clinical response to lithium.
    Gould TD; O'Donnell KC; Picchini AM; Manji HK
    Neuropsychopharmacology; 2007 Jun; 32(6):1321-33. PubMed ID: 17151598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphetamine-induced hypolocomotion in mice with more brain D2 dopamine receptors.
    Helmeste DM; Seeman P
    Psychiatry Res; 1982 Dec; 7(3):351-9. PubMed ID: 6962442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of d-amphetamine and scopolamine on activity before and after shock in three mouse strains.
    Anisman H; Wahlsten D; Kokkinidis L
    Pharmacol Biochem Behav; 1975; 3(5):819-24. PubMed ID: 1208622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of control activity levels in the reported strain differences to the behavioral effects of drugs in mice.
    Wenger GR
    Pharmacol Biochem Behav; 1989 Jan; 32(1):241-7. PubMed ID: 2734335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motility of mice after amphetamine: effects of strain, aggregation and illumination.
    Davis WM; Babbini M; Pong SF; King WT; White CL
    Pharmacol Biochem Behav; 1974; 2(6):803-9. PubMed ID: 4463375
    [No Abstract]   [Full Text] [Related]  

  • 9. Genetic analysis of the behavioral response to d-amphetamine in mice.
    Moisset B
    Psychopharmacology (Berl); 1977 Aug; 53(3):263-7. PubMed ID: 408855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chronic amphetamine in BALB/cBy mice, a strain that is not stimulated by acute administration of amphetamine.
    Logan L; Seale TW; Cao W; Carney JM
    Pharmacol Biochem Behav; 1988 Nov; 31(3):675-82. PubMed ID: 3251250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of d- and l-amphetamine on dorsal and ventral hypothalamic self-stimulation in three inbred strains of mice.
    Cazala P
    Pharmacol Biochem Behav; 1976 Nov; 5(5):505-10. PubMed ID: 1019180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The alpha2-adrenoceptor antagonist atipamezole reduces the development and expression of d-amphetamine-induced behavioural sensitization.
    Juhila J; Haapalinna A; Sirviö J; Sallinen J; Honkanen A; Korpi ER; Scheinin M
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Mar; 367(3):274-80. PubMed ID: 12644900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of d-amphetamine upon open field behaviour in two inbred strains of mice.
    Moisset B; Welch BL
    Experientia; 1973 May; 29(5):625-6. PubMed ID: 4730313
    [No Abstract]   [Full Text] [Related]  

  • 14. Deletion of Melanin-Concentrating Hormone Receptor-1 gene accentuates D-amphetamine-induced psychomotor activation but neither the subsequent development of sensitization nor the expression of conditioned activity in mice.
    Tyhon A; Lakaye B; Grisar T; Tirelli E
    Pharmacol Biochem Behav; 2008 Feb; 88(4):446-55. PubMed ID: 17996928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rate-dependent effects of d-amphetamine on locomotor activity in mice: possible relationship to paradoxical amphetamine sedation in minimal brain dysfunction.
    Glick SD; Milloy S
    Eur J Pharmacol; 1973 Nov; 24(2):266-8. PubMed ID: 4797286
    [No Abstract]   [Full Text] [Related]  

  • 16. Inhibitory control and response latency differences between C57BL/6J and DBA/2J mice in a Go/No-Go and 5-choice serial reaction time task and strain-specific responsivity to amphetamine.
    Loos M; Staal J; Schoffelmeer AN; Smit AB; Spijker S; Pattij T
    Behav Brain Res; 2010 Dec; 214(2):216-24. PubMed ID: 20580749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol-amphetamine interaction effects on spontaneous motor activity and fixed-interval responding.
    Duncan PM; Cook NJ
    Psychopharmacology (Berl); 1981; 74(3):256-9. PubMed ID: 6791234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of ibogaine and D-amphetamine: in vivo microdialysis and motor behavior in rats.
    Maisonneuve IM; Keller RW; Glick SD
    Brain Res; 1992 May; 579(1):87-92. PubMed ID: 1623410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison between locomotor activity changes produced by phencyclidine and D-amphetamine in CD-1 male mice.
    Stavchansky S; Riffee W; Geary R
    Res Commun Chem Pathol Pharmacol; 1985 May; 48(2):189-202. PubMed ID: 4023408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of stimulus locale on strain differences in active avoidance after scopolamine of D-amphetamine treatment.
    Anisman H
    Pharmacol Biochem Behav; 1976 Jan; 4(1):103-6. PubMed ID: 1265090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.