BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6935193)

  • 21. Detergentless microemulsions as media for enzymatic reactions. Cholesterol oxidation catalyzed by cholesterol oxidase.
    Khmelnitsky YL; Hilhorst R; Veeger C
    Eur J Biochem; 1988 Sep; 176(2):265-71. PubMed ID: 3166425
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stereospecific hydrogen transfer from C-4 to C-6 during enzymatic transformation of cholesterol into cholestenone.
    Nambara T; Ikegawa S; Hirayama T; Hosoda H
    Chem Pharm Bull (Tokyo); 1978 Mar; 26(3):757-64. PubMed ID: 647852
    [No Abstract]   [Full Text] [Related]  

  • 23. Purification and properties of a new Brevibacterium sterolicum cholesterol oxidase produced by E. coli MM294/pnH10.
    Fujishiro K; Uchida H; Shimokawa K; Nakano M; Sano F; Ohta T; Kayahara N; Aisaka K; Uwajima T
    FEMS Microbiol Lett; 2002 Oct; 215(2):243-8. PubMed ID: 12399041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic oxidation of steroids in organic solvent using a STR-plug flow reactor and continuous product separation.
    Doddema HJ; Lugt JP; Lambers A; Liou JK; Grande HJ; Laane C
    Ann N Y Acad Sci; 1987; 501():178-82. PubMed ID: 3475012
    [No Abstract]   [Full Text] [Related]  

  • 25. [Catalytic properties of cholesterol oxidase in the cholesterol oxidation reaction in an aqueous medium].
    Aleksandrovskiĭ IaA
    Biokhimiia; 1987 Oct; 52(10):1696-703. PubMed ID: 3480759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous cholesterol movement between lipid vesicles and monkey small intestinal brush border membrane.
    Sadana T; Sanyal SN; Majumdar S; Dhall K; Chakravarti RN
    Biochem Cell Biol; 1986 Jun; 64(6):575-82. PubMed ID: 3741674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: influence of apolipoprotein A-I concentration and vesicle composition.
    Gudheti MV; Lee SP; Danino D; Wrenn SP
    Biochemistry; 2005 May; 44(19):7294-304. PubMed ID: 15882068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of copper-Brevibacterium cholesterol oxidase hybrid nanoflowers.
    Hao M; Fan G; Zhang Y; Xin Y; Zhang L
    Int J Biol Macromol; 2019 Apr; 126():539-548. PubMed ID: 30593816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cholesterol oxidase from Brevibacterium sterolicum. The relationship between covalent flavinylation and redox properties.
    Motteran L; Pilone MS; Molla G; Ghisla S; Pollegioni L
    J Biol Chem; 2001 May; 276(21):18024-30. PubMed ID: 11359791
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity.
    Grönberg L; Slotte JP
    Biochemistry; 1990 Apr; 29(13):3173-8. PubMed ID: 2334687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational analyses of enzymes and substrates in processing environments.
    Clark DS; Skerker PS; Randolph TW; Blanch HW; Prausnitz JM
    Ann N Y Acad Sci; 1988; 542():16-29. PubMed ID: 2852476
    [No Abstract]   [Full Text] [Related]  

  • 32. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient.
    Mayer LD; Bally MB; Cullis PR
    Biochim Biophys Acta; 1986 May; 857(1):123-6. PubMed ID: 3964703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ESR and electron nuclear double resonance characterization of the cholesterol oxidase from Brevibacterium sterolicum in its semiquinone state.
    Medina M; Vrielink A; Cammack R
    Eur J Biochem; 1994 Jun; 222(3):941-7. PubMed ID: 8026504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of the thermostability and enzymatic activity of cholesterol oxidase by site-directed mutagenesis.
    Sun Y; Yang H; Wang W
    Biotechnol Lett; 2011 Oct; 33(10):2049-55. PubMed ID: 21701916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cholesterol inhibits peroxidation of egg phosphatidylcholine in multilamellar liposomes].
    Gallová J; Slosarcík P; Uhríková D; Balgavý P
    Ceska Slov Farm; 2002 Sep; 51(5):240-3. PubMed ID: 12407922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of hypophysectomy on the functions of ovarian mitochondria of mature rats.
    Dimino MJ
    Proc Soc Exp Biol Med; 1977 Nov; 156(2):330-3. PubMed ID: 200951
    [No Abstract]   [Full Text] [Related]  

  • 37. Carbon-13 nuclear magnetic resonance studies of cholesterol-egg yolk phosphatidylcholine vesicles.
    Brainard JR; Cordes EH
    Biochemistry; 1981 Aug; 20(16):4607-17. PubMed ID: 7197546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of the role of an omega loop of cholesterol oxidase: a truncated loop mutant has altered substrate specificity.
    Sampson NS; Kass IJ; Ghoshroy KB
    Biochemistry; 1998 Apr; 37(16):5770-8. PubMed ID: 9548964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lecithin:cholesterol acyltransferase regulation. II. Effect of fluidity of egg phosphatidylcholine vesicles.
    Ellerbe P; Murphy RB; Rose HG
    Chem Phys Lipids; 1985 Sep; 38(3):275-85. PubMed ID: 4085087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of amphiphilic peptides to phospholipid/cholesterol unilamellar vesicles: a model for protein--cholesterol interaction.
    Fukushima D; Yokoyama S; Kézdy FJ; Kaiser ET
    Proc Natl Acad Sci U S A; 1981 May; 78(5):2732-6. PubMed ID: 6789321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.