These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6935647)

  • 1. Wavelength regulation in rhodopsin: effects of dipoles and amino acid side chains.
    Hays TR; Lin SH; Eyring H
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6314-8. PubMed ID: 6935647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon spectroscopy of locked-11-cis-rhodopsin: evidence for a protonated Schiff base in a neutral protein binding site.
    Birge RR; Murray LP; Pierce BM; Akita H; Balogh-Nair V; Findsen LA; Nakanishi K
    Proc Natl Acad Sci U S A; 1985 Jun; 82(12):4117-21. PubMed ID: 2987964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal chromophore of rhodopsin photoisomerizes within picoseconds.
    Hayward G; Carlsen W; Siegman A; Stryer L
    Science; 1981 Feb; 211(4485):942-4. PubMed ID: 7466366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific photoisomerization of retinal in squid rhodopsin and metarhodopsin.
    Suzuki T; Makino M
    Biochim Biophys Acta; 1981 Jun; 636(1):27-31. PubMed ID: 7284342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of carboxylic acid side chains on the absorption maximum of visual pigments.
    Zhukovsky EA; Oprian DD
    Science; 1989 Nov; 246(4932):928-30. PubMed ID: 2573154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of the retinal protonated Schiff base counterion in rhodopsin.
    Han M; DeDecker BS; Smith SO
    Biophys J; 1993 Aug; 65(2):899-906. PubMed ID: 8105993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative aspects of the photochemistry of isomeric retinals and visual pigments.
    Waddell WH; Crouch R; Nakanishi K; Turro NJ
    J Am Chem Soc; 1976 Jul; 98(14):4189-92. PubMed ID: 932359
    [No Abstract]   [Full Text] [Related]  

  • 9. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient light-induced conformational changes in rhodopsin.
    Daemen FJ; Bonting SL
    Biophys Struct Mech; 1977 Jun; 3(2):117-20. PubMed ID: 890046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral studies on the conformation of rhodopsin.
    Rafferty CN
    Biophys Struct Mech; 1977 Jun; 3(2):123-6. PubMed ID: 560888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge stabilization mechanism in the visual and purple membrane pigments.
    Warshel A
    Proc Natl Acad Sci U S A; 1978 Jun; 75(6):2558-62. PubMed ID: 275826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies on the chromophore attachment site of rhodopsin following bleaching.
    Findlay JB; Moore A; Pappin DJ
    FEBS Lett; 1982 Feb; 138(1):67-70. PubMed ID: 7040107
    [No Abstract]   [Full Text] [Related]  

  • 14. Primary events in dim light vision: a chemical and spectroscopic approach toward understanding protein/chromophore interactions in rhodopsin.
    Fishkin N; Berova N; Nakanishi K
    Chem Rec; 2004; 4(2):120-35. PubMed ID: 15073879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal has a highly dipolar vertically excited singlet state: implications for vision.
    Mathies R; Stryer L
    Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2169-73. PubMed ID: 1065867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicycle-pedal model for the first step in the vision process.
    Warshel A
    Nature; 1976 Apr; 260(5553):679-83. PubMed ID: 1264239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin.
    Gilson HS; Honig BH; Croteau A; Zarrilli G; Nakanishi K
    Biophys J; 1988 Feb; 53(2):261-9. PubMed ID: 3345334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8309-13. PubMed ID: 2573063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assignment of groups responsible for the "opsin shift" and light absorptions of rhodopsin and red, green, and blue iodopsins (cone pigments).
    Kosower EM
    Proc Natl Acad Sci U S A; 1988 Feb; 85(4):1076-80. PubMed ID: 3422479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.