These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 6938952)

  • 1. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine.
    Kuo JF; Andersson RG; Wise BC; Mackerlova L; Salomonsson I; Brackett NL; Katoh N; Shoji M; Wrenn RW
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7039-43. PubMed ID: 6938952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyamines inhibit phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases.
    Qi DF; Schatzman RC; Mazzei GJ; Turner RS; Raynor RL; Liao S; Kuo JF
    Biochem J; 1983 Aug; 213(2):281-8. PubMed ID: 6615435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous substrate proteins for Ca2+-calmodulin-dependent, Ca2+-phospholipid-dependent and cyclic AMP-dependent protein kinases in mouse pancreatic islets.
    Thams P; Capito K; Hedeskov CJ
    Biochem J; 1984 Jul; 221(1):247-53. PubMed ID: 6087803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin release and protein phosphorylation: possible role of calmodulin.
    Schubart UK; Erlichman J; Fleischer N
    Fed Proc; 1982 May; 41(7):2278-82. PubMed ID: 6281081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by melittin of phospholipid-sensitive and calmodulin-sensitive Ca2+-dependent protein kinases.
    Katoh N; Raynor RL; Wise BC; Schatzman RC; Turner RS; Helfman DM; Fain JN; Kuo JF
    Biochem J; 1982 Jan; 202(1):217-24. PubMed ID: 6896276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide(W-7), a calmodulin antagonist, also inhibits phospholipid-sensitive calcium-dependent protein kinase.
    Schatzman RC; Raynor RL; Kuo JF
    Biochim Biophys Acta; 1983 Jan; 755(1):144-7. PubMed ID: 6297609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ and calmodulin-regulated endogenous tubulin kinase activity in presynaptic nerve terminal preparations.
    Burke BE; Delorenzo RJ
    Brain Res; 1982 Mar; 236(2):393-415. PubMed ID: 6279244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of protein kinase in the bovine corpus luteum by phospholipid and Ca2+.
    Davis JS; Clark MR
    Biochem J; 1983 Aug; 214(2):569-74. PubMed ID: 6311189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate proteins for calmodulin-sensitive and phospholipid-sensitive Ca2+-dependent protein kinases in heart, and inhibition of their phosphorylation by palmitoylcarnitine.
    Katoh N; Wrenn RW; Wise BC; Shoji M; Kuo JF
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4813-7. PubMed ID: 6946429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic nucleotide phosphodiesterase of rat pancreatic islets. Effects of Ca2+, calmodulin and trifluoperazine.
    Sugden MC; Ashcroft SJ
    Biochem J; 1981 Aug; 197(2):459-64. PubMed ID: 6275834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+-dependent protein kinase.
    Turner RS; Chou CH; Kibler RF; Kuo JF
    J Neurochem; 1982 Nov; 39(5):1397-404. PubMed ID: 6181205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of protein kinase activity in pancreatic acini by calcium and cAMP.
    Burnham DB; Williams JA
    Am J Physiol; 1984 May; 246(5 Pt 1):G500-8. PubMed ID: 6326611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives.
    Tanaka T; Ohmura T; Yamakado T; Hidaka H
    Mol Pharmacol; 1982 Sep; 22(2):408-12. PubMed ID: 6897280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium-calmodulin-dependent myosin phosphorylation by pancreatic islets.
    MacDonald MJ; Kowluru A
    Diabetes; 1982 Jun; 31(6 Pt 1):566-70. PubMed ID: 6295860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic calcium-binding protein regucalcin decreases Ca2+/calmodulin-dependent protein kinase activity in rat liver cytosol.
    Mori S; Yamaguchi M
    Chem Pharm Bull (Tokyo); 1990 Aug; 38(8):2216-8. PubMed ID: 2177680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of vasopressin and urea on Ca2+-calmodulin-dependent renal prostaglandin E.
    Craven PA; DeRubertis FR
    Am J Physiol; 1981 Dec; 241(6):F649-58. PubMed ID: 6275716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet phosphorylase kinase activity and its regulation by the calcium-dependent regulatory protein, calmodulin.
    Gergely P; Castle AG; Crawford N
    Biochim Biophys Acta; 1980 Mar; 612(1):50-5. PubMed ID: 7362832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation by phosphatidylserine and calmodulin of calcium-dependent phosphorylation of endogenous proteins from cerebral cortex.
    Wrenn RW; Katoh N; Wise BC; Kuo JF
    J Biol Chem; 1980 Dec; 255(24):12042-6. PubMed ID: 7440585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils.
    Helfman DM; Appelbaum BD; Vogler WR; Kuo JF
    Biochem Biophys Res Commun; 1983 Mar; 111(3):847-53. PubMed ID: 6301486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipid-sensitive Ca2+-dependent protein kinase: a major protein phosphorylation system.
    Kuo JF; Schatzman RC; Turner RS; Mazzei GJ
    Mol Cell Endocrinol; 1984 May; 35(2-3):65-73. PubMed ID: 6203790
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.