These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6938988)

  • 1. Current recorded from a cut-open giant axon under voltage clamp.
    Llano I; Bezanilla F
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7484-6. PubMed ID: 6938988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium current in the squid giant axon.
    Clay JR
    Int Rev Neurobiol; 1985; 27():363-84. PubMed ID: 2417975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single sodium channels from the squid giant axon.
    Bezanilla F
    Biophys J; 1987 Dec; 52(6):1087-90. PubMed ID: 2447971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium and sodium ion current noise in the membrane of the squid giant axon.
    Conti F; De Felice LJ; Wanke E
    J Physiol; 1975 Jun; 248(1):45-82. PubMed ID: 1151828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage-independent gating transitions in squid axon potassium channels.
    Spires S; Begenisich T
    Biophys J; 1995 Feb; 68(2):491-500. PubMed ID: 7696502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-channel, macroscopic, and gating currents from sodium channels in the squid giant axon.
    Vandenberg CA; Bezanilla F
    Biophys J; 1991 Dec; 60(6):1499-510. PubMed ID: 1663795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A voltage-clamp study of the effects of colchicine on the squid giant axon.
    Chang DC
    J Cell Physiol; 1983 Jun; 115(3):260-4. PubMed ID: 6853606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A physical model of nerve axon. II: Action potential and excitation currents. Voltage-clamp studies of chemical driving forces of Na+ and K+ in squid giant axon.
    Chang DC
    Physiol Chem Phys; 1979; 11(3):263-88. PubMed ID: 531110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The compensation of potential changes produced by trivalent erbium ion in squid giant axon with applied potentials.
    Starzak ME; Starzak RJ
    Biophys J; 1978 Nov; 24(2):555-60. PubMed ID: 728529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Currents recorded through small areas of squid axon membrane with an internal virtual ground voltage clamp.
    López-Barneo J; Matteson DR; Armstrong CM
    Biophys J; 1981 Dec; 36(3):811-5. PubMed ID: 7326334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of aminopyridines with potassium channels of squid axon membranes.
    Yeh JZ; Oxford GS; Wu CH; Narahashi T
    Biophys J; 1976 Jan; 16(1):77-81. PubMed ID: 1244890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A calculation of the current voltage characteristic of a voltage-controlled model membrane ion channel.
    Edmonds DT
    Proc R Soc Lond B Biol Sci; 1981 Dec; 214(1194):125-36. PubMed ID: 6121328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single channel recordings of K+ currents in squid axons.
    Conti F; Neher E
    Nature; 1980 May; 285(5761):140-3. PubMed ID: 6246440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between the inactivating fraction of the asymmetry current and gating of the sodium channel in the squid giant axon.
    Keynes RD; Greeff NG; Van Helden DF
    Proc R Soc Lond B Biol Sci; 1982 Jun; 215(1200):391-404. PubMed ID: 6127713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components.
    Greeff NG; Keynes RD; Van Helden DF
    Proc R Soc Lond B Biol Sci; 1982 Jun; 215(1200):375-89. PubMed ID: 6127712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Technical aspects of voltage-clamping the cut-open squid giant axon.
    Forster IC; Greeff NG
    J Neurosci Methods; 1988 Dec; 26(2):151-68. PubMed ID: 3216683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for conductance changes in the squid giant axon. II. Channel kinetics.
    Starzak ME
    J Theor Biol; 1973 Jun; 39(3):505-22. PubMed ID: 4730015
    [No Abstract]   [Full Text] [Related]  

  • 18. A new phenomenology for squid axon voltage-clamp currents.
    Arndt RA; Roper LD
    J Theor Biol; 1974 Dec; 48(2):373-87. PubMed ID: 4459591
    [No Abstract]   [Full Text] [Related]  

  • 19. Rapid sodium channel conductance changes during voltage clamp steps in squid giant axons.
    Fohlmeister JF; Adelman WJ
    Biophys J; 1984 Mar; 45(3):513-21. PubMed ID: 6324915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-clamp predictions by gompertz kinetics model relating squid-axon Na+-gating and ionic currents.
    Easton DM
    Int J Neurosci; 2005 Oct; 115(10):1415-41. PubMed ID: 16162448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.