These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6940192)

  • 1. Permeability characteristics of complement-damaged membranes: evaluation of the membrane leak generated by the complement proteins C5b-9.
    Sims PJ
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1838-42. PubMed ID: 6940192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state analysis of tracer exchange across the C5b-9 complement lesion in a biological membrane.
    Sims PJ; Lauf PK
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5669-73. PubMed ID: 281715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of solute diffusion across the C5b-9 membrane lesion of complement: evidence that individual C5b-9 complexes do not function as discrete, uniform pores.
    Sims PJ; Lauf PK
    J Immunol; 1980 Dec; 125(6):2617-25. PubMed ID: 7430641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complement pores in erythrocyte membranes. Analysis of C8/C9 binding required for functional membrane damage.
    Sims PJ
    Biochim Biophys Acta; 1983 Aug; 732(3):541-52. PubMed ID: 6871214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased ion permeability of planar lipid bilayer membranes after treatment with the C5b-9 cytolytic attack mechanism of complement.
    Michaels DW; Abramovitz AS; Hammer CH; Mayer MM
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2852-6. PubMed ID: 1066698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of electrochemical gradients of Na+ and K+ upon the membrane binding and pore forming activity of the terminal complement proteins.
    Sims PJ; Wiedmer T
    J Membr Biol; 1984; 78(2):169-76. PubMed ID: 6716452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyanine dye fluorescence used to measure membrane potential changes due to the assembly of complement proteins C5b-9.
    Wiedmer T; Sims PJ
    J Membr Biol; 1985; 84(3):249-58. PubMed ID: 4032456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient changes in erythrocyte membrane permeability are induced by sublytic amounts of the complement membrane attack complex (C5b-9).
    Halperin JA; Taratuska A; Rynkiewicz M; Nicholson-Weller A
    Blood; 1993 Jan; 81(1):200-5. PubMed ID: 7678066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased susceptibility to erythrocyte C5b-9 deposition and complement-mediated lysis in chronic renal failure.
    Himmelfarb J; McMonagle E; Holbrook D; Hakim R
    Kidney Int; 1999 Feb; 55(2):659-66. PubMed ID: 9987090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes.
    Hammer CH; Nicholson A; Mayer MM
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):5076-80. PubMed ID: 1061092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane permeability to macromolecules mediated by the membrane attack complex.
    Malinski JA; Nelsestuen GL
    Biochemistry; 1989 Jan; 28(1):61-70. PubMed ID: 2706268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass.
    Salama A; Hugo F; Heinrich D; Höge R; Müller R; Kiefel V; Mueller-Eckhardt C; Bhakdi S
    N Engl J Med; 1988 Feb; 318(7):408-14. PubMed ID: 3340119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size of the transmembrane channels produced by complement proteins C5b-8.
    Ramm LE; Whitlow MB; Mayer MM
    J Immunol; 1982 Sep; 129(3):1143-6. PubMed ID: 6286757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the anti-erythrocyte immune response in mice by the C5b--9 complex of complement.
    Horn W; Opferkuch W; Podack ER
    Immunology; 1981 Jun; 43(2):303-9. PubMed ID: 7019052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complement induces a transient increase in membrane permeability in unlysed erythrocytes.
    Halperin JA; Nicholson-Weller A; Brugnara C; Tosteson DC
    J Clin Invest; 1988 Aug; 82(2):594-600. PubMed ID: 3403718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of ion-conducting channels by the membrane attack complex proteins of complement.
    Shiver JW; Dankert JR; Esser AF
    Biophys J; 1991 Oct; 60(4):761-9. PubMed ID: 1720679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular composition of the terminal membrane and fluid-phase C5b-9 complexes of rabbit complement. Absence of disulphide-bonded C9 dimers in the membrane complex.
    Bhakdi S; Tranum-Jensen J
    Biochem J; 1983 Mar; 209(3):753-61. PubMed ID: 6870789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between channel size and the number of C9 molecules in the C5b-9 complex.
    Ramm LE; Whitlow MB; Mayer MM
    J Immunol; 1985 Apr; 134(4):2594-9. PubMed ID: 2579147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of erythrocyte membrane modulation by lysolecithin on complement-mediated lysis.
    Silverman BA; Weller PF; Shin ML
    J Immunol; 1984 Jan; 132(1):386-91. PubMed ID: 6690605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.