BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 694228)

  • 41. Characterization of the rat adrenal medulla cultured in vitro.
    Fujinaga M; Chen JJ; Scott JC
    In Vitro Cell Dev Biol Anim; 1999 Jan; 35(1):33-42. PubMed ID: 10475253
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adipocytes as a new source of catecholamine production.
    Vargovic P; Ukropec J; Laukova M; Cleary S; Manz B; Pacak K; Kvetnansky R
    FEBS Lett; 2011 Jul; 585(14):2279-84. PubMed ID: 21689652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenylethanolamine N-methyltransferase from the brain and adrenal medulla of the rat: a comparison of their properties.
    Yu PH
    Neurochem Res; 1978 Dec; 3(6):755-62. PubMed ID: 33344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The long term effects of an inhibitor of phenylethanolamine N-methyltransferase upon adrenal epinephrine biosynthesis.
    Pendleton RG; Gessner G; Jenkins B
    Naunyn Schmiedebergs Arch Pharmacol; 1976 Nov; 295(2):127-33. PubMed ID: 825786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies on the long term effects of SK&F 29661 upon adrenal catecholamines.
    Pendleton RG; Gessner G; Sawyer J; Hillegass L; Miller DA
    Naunyn Schmiedebergs Arch Pharmacol; 1982 Apr; 319(1):22-8. PubMed ID: 6125896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catecholamines and phenylethanolamine N-methyltransferase in selected brain nuclei and in the pineal gland of neurogenically hypertensive rats.
    Saavedra JM; Alexander N
    Brain Res; 1983 Sep; 274(2):388-92. PubMed ID: 6626969
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phenylethanolamine-N-methyl transferase (PNMT) activity and catecholamine content in chromaffin tissue and sympathetic neurons in the cod, Gadus morhua.
    Abrahamsson T; Nilsson S
    Acta Physiol Scand; 1976 Jan; 96(1):94-9. PubMed ID: 1251750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of phenylethanolamine N-methyltransferase (PNMT) mRNA in the rat adrenal medulla by corticosterone.
    Jiang W; Uht R; Bohn MC
    Int J Dev Neurosci; 1989; 7(5):513-20. PubMed ID: 2816488
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of estrogens and progesterone on the catecholaminergic activity of the adrenal medulla in female rats.
    Fernández-Ruiz JJ; Bukhari AR; Martínez-Arrieta R; Tresguerres JA; Ramos JA
    Life Sci; 1988; 42(9):1019-28. PubMed ID: 3343893
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ontogeny of epinephrine metabolic pathways in the rat: role of glucocorticoids.
    Kennedy B; Ziegler MG
    Int J Dev Neurosci; 2000 Feb; 18(1):53-9. PubMed ID: 10708906
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Central and peripheral contributions to hypothalamic epinephrine.
    Mefford IN; Roth KA; Paxinos G; Barchas JD
    Brain Res; 1981 Nov; 224(1):175-9. PubMed ID: 7284834
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissociation between hypothalamic catecholamine levels and epinephrine-forming enzyme activity after midbrain hemitransections in the rat.
    Saavedra JM; Fernandez-Pardal J; Ross C; Reis D
    Brain Res; 1983 Oct; 276(2):367-71. PubMed ID: 6605179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Why is the adrenal adrenergic?
    Wong DL
    Endocr Pathol; 2003; 14(1):25-36. PubMed ID: 12746560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunohistochemical localization of epinephrine, norepinephrine, catecholamine-synthesizing enzymes, and chromogranin in neuroendocrine cells and tumors.
    Lloyd RV; Sisson JC; Shapiro B; Verhofstad AA
    Am J Pathol; 1986 Oct; 125(1):45-54. PubMed ID: 3777139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Microtubules, catecholamines and enzymes of catecholamine synthesis in adrenal chromaffin cells following treatment with vinblastine (demonstration)].
    Limmeroth B; Unsicker K; Otten U; Lindmar R; Löffelholz K; Wolf U
    Verh Anat Ges; 1978; (72):593. PubMed ID: 34287
    [No Abstract]   [Full Text] [Related]  

  • 56. Genetic alteration of catecholamine specificity in transgenic mice.
    Kobayashi K; Sasaoka T; Morita S; Nagatsu I; Iguchi A; Kurosawa Y; Fujita K; Nomura T; Kimura M; Katsuki M
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1631-5. PubMed ID: 1542654
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Adrenal Medulla Modulates Mechanical Allodynia in a Rat Model of Neuropathic Pain.
    Arribas-Blázquez M; Olivos-Oré LA; Barahona MV; Wojnicz A; De Pascual R; Sánchez de la Muela M; García AG; Artalejo AR
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33171955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of cortisol on adrenal phenylethanolamine-N-methyltransferase: antagonistic effects of vitamin D in hypophysectomized rats fed a vitamin D free diet.
    Brion F; Parvez S; Parvez H; Marnay-Gulat C; Raoul Y
    Can J Physiol Pharmacol; 1978 Dec; 56(6):1017-21. PubMed ID: 743617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacology of brain epinephrine neurons.
    Fuller RW
    Annu Rev Pharmacol Toxicol; 1982; 22():31-55. PubMed ID: 6805416
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tetrahydroisoquinolinecarboxylic acids and regulation of phenylethanolamine N-methyltransferase in cultured adrenal medulla.
    Burke WJ; Galloway MP; Coscia CJ
    Biochem Pharmacol; 1982 Oct; 31(20):3257-60. PubMed ID: 7150354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.