These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6945287)

  • 1. Human inherited marker chromosome 22 short-arm enlargement: investigation of rDNA gene multiplicity, Ag-band size, and acrocentric association.
    Bernstein R; Dawson B; Griffiths J
    Hum Genet; 1981; 58(2):135-9. PubMed ID: 6945287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Molecular and clinical cytogenetic studies of a family with a 22p+ marker chromosome].
    Liu S; Gao C; Hu Y; Liu M; Cheng Z
    Yi Chuan Xue Bao; 1993; 20(1):7-11. PubMed ID: 8507506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rearrangements of chromosomal regions containing ribosomal RNA genes and centromeric heterochromatin in the human melanoma cell line MeWo.
    Holden JJ; Reimer DL; Roder JC; White BN
    Cancer Genet Cytogenet; 1986 Apr; 21(3):221-37. PubMed ID: 3456262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory changes in silver-stainability of nucleolar organizer regions in mice.
    Suzuki H; Sakurai S; Nishimura M; Kominami R; Moriwaki K
    Jpn J Genet; 1992 Jun; 67(3):217-32. PubMed ID: 1445722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosome heteromorphisms in the Japanese. II. Nucleolus organizer regions of variant chromosomes in D and G groups.
    Sofuni T; Tanabe K; Awa AA
    Hum Genet; 1980; 55(2):265-70. PubMed ID: 6161080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intercalar satellites of human acrocentric chromosomes as a cytological manifestation of polymorphism in GC-rich material?
    Balícek P; Zizka J
    Hum Genet; 1980; 54(3):343-7. PubMed ID: 6156886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Family with 22-derived marker chromosome and late-onset dementia of the Alzheimer type: II. Further cytogenetic analysis of the marker and characterization of the high-level repeat sequences using fluorescence in situ hybridization.
    Percy ME; Dearie TG; Jabs EW; Bauer SJ; Chodakowski B; Somerville MJ; Lennox A; McLachlan DR; Baldini A; Miller DA
    Am J Med Genet; 1993 Aug; 47(1):14-9. PubMed ID: 7690182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of a familial 15p + polymorphism: exclusion of Y/15 translocation.
    Werner W; Herrmann FH
    Clin Genet; 1984 Sep; 26(3):204-8. PubMed ID: 6478640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genetic determination of the activity of nucleolar-organizing regions of human chromosomes].
    Egolina NA; Davudov AZ; Beniush VA; Zakharov AF
    Biull Eksp Biol Med; 1981 Mar; 91(3):350-3. PubMed ID: 7195749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of (GACA)n simple repeats in an exceptional 14p+ marker chromosome.
    Schmid M; Nanda I; Steinlein C; Epplen JT
    Hum Genet; 1994 Apr; 93(4):375-82. PubMed ID: 8168807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercellular NOR-Ag variability in man. I. Technical improvements and marker acrocentric chromosomes.
    Sozansky OA; Zakharov AF; Benjush VA
    Hum Genet; 1984; 68(4):299-302. PubMed ID: 6210238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interindividual and intercellular differences in the total activity of ribosomal genes detectable by the Ag staining of nucleolus organizer regions in human acrocentric chromosomes].
    Liapunova NA; Egolina NA; Mkhitarova EV; Viktorov VV
    Genetika; 1988 Jul; 24(7):1282-8. PubMed ID: 3181751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular cytogenetic study on the case with 14p+ marker chromosome].
    Cheng ZY; Gao CS; Xin X; Fu SM; Zhong WL
    Yi Chuan Xue Bao; 1989; 16(4):331-4. PubMed ID: 2486254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferential derivation of abnormal human G-group-like chromosomes from chromosome 15.
    Schreck RR; Breg WR; Erlanger BF; Miller OJ
    Hum Genet; 1977 Apr; 36(1):1-12. PubMed ID: 323137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rat XC sarcoma cell line: ribosomal RNA gene amplification and banded karyotype.
    Tantravahi U; Erlanger BF; Miller OJ
    Cancer Genet Cytogenet; 1982 Feb; 5(1):63-73. PubMed ID: 7066874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The association of the nucleolus and the short arm of acrocentric chromosomes with the XY pair in human spermatocytes: its possible role in facilitating sex-chromosome acrocentric translocations.
    Stahl A; Hartung M; Devictor M; Bergé-Lefranc JL
    Hum Genet; 1984; 68(2):173-80. PubMed ID: 6500568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for methylation of inactive human rRNA genes in amplified regions.
    Tantravahi U; Breg WR; Wertelecki V; Erlanger BF; Miller OJ
    Hum Genet; 1981; 56(3):315-20. PubMed ID: 6940826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorphisms of Ag-stained nucleolar organizer regions in man.
    Zakharov AF; Davudov AZ; Benjush VA; Egolina NA
    Hum Genet; 1982; 60(4):334-9. PubMed ID: 7201973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NSG banding of sequentially QFQ and RFA banded human acrocentric chromosomes.
    Ved Brat S; Verma RS; Dosik H
    Stain Technol; 1980 Mar; 55(2):77-80. PubMed ID: 6157229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver staining of nucleolus organizer regions during human spermatogenesis.
    Schmid M; Müller H; Stasch S; Engel W
    Hum Genet; 1983; 64(4):363-70. PubMed ID: 6618489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.