These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 69469)
1. Characterization of the pigeon isthmo-tectal pathway by selective uptake and retrograde movement of radioactive compounds and by Golgi-like horseradish peroxidase labeling. Hunt SP; Streit P; Künzle H; Cuénod M Brain Res; 1977 Jul; 129(2):197-212. PubMed ID: 69469 [No Abstract] [Full Text] [Related]
2. Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. Hunt SP; Künzle H J Comp Neurol; 1976 Nov; 170(2):153-72. PubMed ID: 62764 [TBL] [Abstract][Full Text] [Related]
3. GABA as an inhibitory transmitter in the pigeon isthmo-tectal pathway. Felix D; Wu GY; Wang SR Neurosci Lett; 1994 Mar; 169(1-2):212-4. PubMed ID: 7914015 [TBL] [Abstract][Full Text] [Related]
4. Selective uptake and transport of label within three identified neuronal systems after injection of 3H-GABA into the pigeon optic tectum: an autoradiographic and Golgi study. Hunt SP; Künzle H J Comp Neurol; 1976 Nov; 170(2):173-89. PubMed ID: 62765 [TBL] [Abstract][Full Text] [Related]
5. A new and sensitive staining method for axonally transported horseradish peroxidase (HRP) in the pigeon visual system. Streit P; Reubi JC Brain Res; 1977 May; 126(3):530-7. PubMed ID: 67876 [No Abstract] [Full Text] [Related]
6. [Comments on the topography of the crossed isthmo-tectal projection in the frog]. Gaillard F C R Seances Acad Sci III; 1983; 296(18):865-70. PubMed ID: 6192883 [TBL] [Abstract][Full Text] [Related]
7. Retrograde transneuronal transport of the fluorescent dye rhodamine beta-isothiocyanate from the primary and centrifugal visual systems in the pigeon. Miceli D; Repérant J; Marchand L; Rio JP Brain Res; 1993 Jan; 601(1-2):289-98. PubMed ID: 7679309 [TBL] [Abstract][Full Text] [Related]
8. Tectal afferent neurons identified by the retrograde HRP method in the carp telencephalon. Ito H; Kishida R Brain Res; 1977 Jul; 130(1):142-5. PubMed ID: 69474 [No Abstract] [Full Text] [Related]
9. Disappearance of particulate tectal protein during optic nerve degeneration in the pigeon. Cuénod M; Marko P; Niederer E Brain Res; 1973 Jan; 49(2):422-6. PubMed ID: 4124399 [No Abstract] [Full Text] [Related]
10. Tectal deafferentation in the frog: selective loss of L-glutamate and gamma-aminobutyrate. Roberts PJ; Yates RA Neuroscience; 1976; 1(5):371-4. PubMed ID: 1087382 [No Abstract] [Full Text] [Related]
11. The tractus infundibuli and other afferents to the parahippocampal region of the pigeon. Benowitz LI; Karten HJ Brain Res; 1976 Jan; 102(1):174-80. PubMed ID: 55293 [No Abstract] [Full Text] [Related]
12. Centrifugal innervation modulates visual activity of tectal cells in pigeons. Li JL; Xiao Q; Fu YX; Wang SR Vis Neurosci; 1998; 15(3):411-5. PubMed ID: 9685194 [TBL] [Abstract][Full Text] [Related]
13. A crossed isthmo-tectal projection in Rana pipiens and its involvement in the ipsilateral visuotectal projection. Grobstein P; Comer C; Hollyday M; Archer SM Brain Res; 1978 Nov; 156(1):117-23. PubMed ID: 308832 [No Abstract] [Full Text] [Related]
14. Distribution, laminar location, and morphology of tectal neurons projecting to the isthmo-optic nucleus and the nucleus isthmi, pars parvocellularis in the pigeon (Columba livia) and chick (Gallus domesticus): a retrograde labelling study. Woodson W; Reiner A; Anderson K; Karten HJ J Comp Neurol; 1991 Mar; 305(3):470-88. PubMed ID: 1709956 [TBL] [Abstract][Full Text] [Related]
15. In vitro release of endogenous beta-alanine, GABA, and glutamate, and electrophysiological effect of beta-alanine in pigeon optic tectum. Toggenburger G; Felix D; Cuénod M; Henke H J Neurochem; 1982 Jul; 39(1):176-83. PubMed ID: 6123549 [TBL] [Abstract][Full Text] [Related]
16. The retinotectal projections in the pigeon. an experimental optical and electron microscope study. Repérant J; Angaut P Neuroscience; 1977; 2(1):119-40. PubMed ID: 72364 [No Abstract] [Full Text] [Related]
17. The axon arbourisation of nuclei isthmi neurons in the optic tectum of the chick and pigeon. A Golgi and anterograde tracer-study. Tömböl T; Eyre MD; Alpár A; Németh A Anat Embryol (Berl); 2005 Jun; 209(5):371-80. PubMed ID: 15864640 [TBL] [Abstract][Full Text] [Related]
18. Anterograde and retrograde axonal transport of native and derivatized wheat germ agglutinin in the visual system of the chicken. Crossland WJ Brain Res; 1985 Nov; 347(1):11-27. PubMed ID: 2413966 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the normal and regenerated retinotectal pathways of goldfish. Stuermer CA; Easter SS J Comp Neurol; 1984 Feb; 223(1):57-76. PubMed ID: 6200514 [TBL] [Abstract][Full Text] [Related]