These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6947232)

  • 1. Successive generations of mice produced from an established culture line of euploid teratocarcinoma cells.
    Stewart TA; Mintz B
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6314-8. PubMed ID: 6947232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. METT-1: a karyotypically normal in vitro line of developmentally totipotent mouse teratocarcinoma cells.
    Mintz B; Cronmiller C
    Somatic Cell Genet; 1981 Jul; 7(4):489-505. PubMed ID: 7280932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts.
    Illmensee K; Mintz B
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):549-53. PubMed ID: 1061157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Normal genetically mosaic mice produced from malignant teratocarcinoma cells.
    Mintz B; Illmensee K
    Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3585-9. PubMed ID: 1059147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Teratocarcinoma cells as vehicles for mutant and foreign genes.
    Mintz B
    Brookhaven Symp Biol; 1977 May 12-20; (29):82-95. PubMed ID: 754871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent germ-line transmission of the teratocarcinoma genome from the METT-1 culture line to progeny in vivo.
    Stewart TA; Mintz B
    J Exp Zool; 1982 Dec; 224(3):465-9. PubMed ID: 7153738
    [No Abstract]   [Full Text] [Related]  

  • 7. Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice.
    Watanabe T; Dewey MJ; Mintz B
    Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5113-7. PubMed ID: 283419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal blood cells of anemic genotype in teratocarcinoma-derived mosaic mice.
    Mintz B; Cronmiller C
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6247-51. PubMed ID: 282641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A recessive mutation (ter) causing germ cell deficiency and a high incidence of congenital testicular teratomas in 129/Sv-ter mice.
    Noguchi T; Noguchi M
    J Natl Cancer Inst; 1985 Aug; 75(2):385-92. PubMed ID: 3860691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Teratocarcinoma cells cultured on embryonic substrates show accelerated migrating behavior in vitro and increased metastatic activity in vivo.
    Pantazis CG; Cheetham J
    Proc Soc Exp Biol Med; 1985 Oct; 180(1):203-8. PubMed ID: 4034530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new coat color mouse line for testing germline transmission of embryonic stem cells while retaining an inbred genetic background.
    Barbaric I; Stewart M; Wells S; Dear TN
    J Am Assoc Lab Anim Sci; 2007 May; 46(3):37-40. PubMed ID: 17487951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a high molecular weight cell surface glycoprotein (LETS protein) by preimplantation mouse embryos and teratocarcinoma stem cells.
    Zetter BR; Martin GR
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2324-8. PubMed ID: 276875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of phenotype in somatic cell hybrids derived by fusion of teratocarcinoma cell lines with normal or tumor-derived mouse cells.
    Gmür R; Knowles BB; Solter D
    Dev Biol; 1981 Jan; 81(2):245-54. PubMed ID: 7202840
    [No Abstract]   [Full Text] [Related]  

  • 14. Cell relationships during aggregation between preimplantation embryos and teratocarcinoma-derived cells.
    Lehtonen E; Wartiovaara J; Reima I
    J Embryol Exp Morphol; 1984 Jun; 81():17-35. PubMed ID: 6470607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency].
    Gordeev OF; Lifantseva NV; Khaĭdukov SV
    Ontogenez; 2011; 42(6):403-24. PubMed ID: 22288104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of teratomas in mice: possibilities for the future production of animal models.
    Lehman JM
    Am J Pathol; 1980 Dec; 101(3 Suppl):S33-40. PubMed ID: 7457573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of teratocarcinoma stem cells into blastocysts by aggregation with cleavage-stage embryos.
    Fujii JT; Martin GR
    Dev Biol; 1980 Jan; 74(1):239-44. PubMed ID: 7350010
    [No Abstract]   [Full Text] [Related]  

  • 18. The developmental potential of a euploid male teratocarcinoma cell line after blastocyst injection.
    Rossant J; McBurney MW
    J Embryol Exp Morphol; 1982 Aug; 70():99-112. PubMed ID: 7142904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction.
    Saenz-de-Juano MD; Billooye K; Smitz J; Anckaert E
    Mol Hum Reprod; 2016 Jun; 22(6):427-41. PubMed ID: 26908643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Embryo-derived teratocarcinoma. III. Development of tumors from teratocarcinoma-permissive and non-permissive strain embryos transplanted to F1 hybrids.
    Solter D; Dominis M; Damjanov I
    Int J Cancer; 1981 Oct; 28(4):479-83. PubMed ID: 7309292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.