These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 694725)

  • 1. Genetic analysis of tumorigenesis: I. Expression of tumor-forming ability in hamster hybrid cell lines.
    Sager R; Kovac PE
    Somatic Cell Genet; 1978 May; 4(3):375-92. PubMed ID: 694725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of tumorigenesis: V. Chromosomal analysis of tumorigenic and nontumorigenic diploid chinese hamster cell lines.
    Kitchin RM; Sager R
    Somatic Cell Genet; 1980 Jan; 6(1):75-87. PubMed ID: 7368047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic analysis of tumorigenesis: VI. Chromosome rearrangements in tumors derived from diploid premalignant Chinese hamster cells in nude mice.
    Kitchin RM; Sager R
    Somatic Cell Genet; 1980 Sep; 6(5):615-30. PubMed ID: 7434146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of tumorigenicity in hybrids of tumorigenic Chinese hamster cells and diploid mouse fibroblasts: dependence on the presence of at least three different mouse chromosomes and independence of hamster genome dosage.
    Schäfer R; Hoffmann H; Willecke K
    Cancer Res; 1983 May; 43(5):2240-6. PubMed ID: 6831446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of tumorigenesis: XII. Genetic control of the anchorage requirement in CHEF cells.
    Marshall CJ; Kitchin RM; Sager R
    Somatic Cell Genet; 1982 Nov; 8(6):709-21. PubMed ID: 7163952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines.
    Howell AN; Sager R
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2358-62. PubMed ID: 276880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of tumorigenesis: IX Suppression of anchorage independence in hybrids between transformed hamster cell lines.
    Marshall CJ; Sager R
    Somatic Cell Genet; 1981 Nov; 7(6):713-23. PubMed ID: 7323949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistep origin of tumor-forming ability in Chinese hamster embryo fibroblast cells.
    Smith BL; Sager R
    Cancer Res; 1982 Feb; 42(2):389-96. PubMed ID: 6799186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of tumorigenicity in somatic cell hybrids. II. Human chromosomes implicated as suppressors of tumorigenicity in hybrids with Chinese hamster ovary cells.
    Klinger HP; Shows TB
    J Natl Cancer Inst; 1983 Sep; 71(3):559-69. PubMed ID: 6577230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of tumorigenicity in hybrids of normal and oncogene-transformed CHEF cells.
    Craig RW; Sager R
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2062-6. PubMed ID: 3856884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of tumorigenesis: IV. Chromosome reduction and marker segregation in progeny clones from Chinese hamster cell hybrids.
    Sager R; Kovac PE
    Somatic Cell Genet; 1979 Jul; 5(4):491-502. PubMed ID: 291130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Expression of malignancy traits in the interspecific somatic hybrids of tumor and normal cells].
    Kakpakova ES
    Genetika; 1983 Nov; 19(11):1845-50. PubMed ID: 6317520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural correlates of cellular tumorigenicity and anchorage independence in transformed fibroblasts.
    Kahn P; Heller D; Shin S
    Cytogenet Cell Genet; 1983; 36(4):605-11. PubMed ID: 6686518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular tumorigenicity in nude mice. Test of associations among loss of cell-surface fibronectin, anchorage independence, and tumor-forming ability.
    Kahn P; Shin SI
    J Cell Biol; 1979 Jul; 82(1):1-16. PubMed ID: 383723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressor genes for malignant and anchorage-independent phenotypes located on human chromosome 9 have no dosage effects.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 2000; 88(1-2):103-9. PubMed ID: 10773681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on transformation markers and tumorigenicity in segregant clones from a human hybrid line.
    Tenchini ML; Larrizza L; Mottura A; Colombi M; Barlati S; De Carli L
    Eur J Cancer Clin Oncol; 1983 Aug; 19(8):1143-9. PubMed ID: 6684560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for suppression of cellular growth in vitro and selection against the indigenous mouse X chromosome in A9 cell hybrids after microcell-mediated transfer of an X from other mammalian species.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 2000; 88(1-2):110-3. PubMed ID: 10773682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of anchorage independence form tumorigenicity in human cell hybrids.
    Stanbridge EJ; Wilkinson J
    Int J Cancer; 1980 Jul; 26(1):1-8. PubMed ID: 7239708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumorigenicity of human HT1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency.
    Benedict WF; Weissman BE; Mark C; Stanbridge EJ
    Cancer Res; 1984 Aug; 44(8):3471-9. PubMed ID: 6744274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azacytidine-induced tumorigenesis of CHEF/18 cells: correlated DNA methylation and chromosome changes.
    Harrison JJ; Anisowicz A; Gadi IK; Raffeld M; Sager R
    Proc Natl Acad Sci U S A; 1983 Nov; 80(21):6606-10. PubMed ID: 6195661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.