BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6951186)

  • 21. A neutron crystallographic analysis of phosphate-free ribonuclease A at 1.7 A resolution.
    Yagi D; Yamada T; Kurihara K; Ohnishi Y; Yamashita M; Tamada T; Tanaka I; Kuroki R; Niimura N
    Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):892-9. PubMed ID: 19690366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determinants of protein hydrogen exchange studied in equine cytochrome c.
    Milne JS; Mayne L; Roder H; Wand AJ; Englander SW
    Protein Sci; 1998 Mar; 7(3):739-45. PubMed ID: 9541406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser Raman spectroscopic studies of the thermal unfolding of ribonuclease A.
    Chen MC; Lord RC
    Biochemistry; 1976 May; 15(9):1889-97. PubMed ID: 5118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A two-dimensional NMR study of exchange behavior of amide hydrogens in a lysozyme derivative with an extra cross-link between Glu35 and Trp108--quenching of cooperative fluctuations and effects on the protein stability.
    Noda Y; Fukuda Y; Segawa S
    Biopolymers; 1997 Feb; 41(2):131-43. PubMed ID: 9004550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conformational stability of ribonuclease T1 determined by hydrogen-deuterium exchange.
    Mullins LS; Pace CN; Raushel FM
    Protein Sci; 1997 Jul; 6(7):1387-95. PubMed ID: 9232639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
    O'Dell WB; Bodenheimer AM; Meilleur F
    Arch Biochem Biophys; 2016 Jul; 602():48-60. PubMed ID: 26592456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.
    Blanchard V; Frank M; Leeflang BR; Boelens R; Kamerling JP
    Biochemistry; 2008 Mar; 47(11):3435-46. PubMed ID: 18293928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of solvent structure and hydrogen exchange in proteins on the basis of neutron diffraction data from deuterated and hydrogenous crystals.
    Harrison RW; Wlodawer A; Sjölin L
    Acta Crystallogr A; 1988 May; 44 ( Pt 3)():309-20. PubMed ID: 3272149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The swapping of terminal arms in ribonucleases: comparison of the solution structure of monomeric bovine seminal and pancreatic ribonucleases.
    Avitabile F; Alfano C; Spadaccini R; Crescenzi O; D'Ursi AM; D'Alessio G; Tancredi T; Picone D
    Biochemistry; 2003 Jul; 42(29):8704-11. PubMed ID: 12873130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
    Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT
    Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solution structure of the RNase H domain of the HIV-1 reverse transcriptase in the presence of magnesium.
    Pari K; Mueller GA; DeRose EF; Kirby TW; London RE
    Biochemistry; 2003 Jan; 42(3):639-50. PubMed ID: 12534276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis.
    Heinemann U; Saenger W
    J Biomol Struct Dyn; 1983 Oct; 1(2):523-38. PubMed ID: 6086061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active site dynamics of ribonuclease.
    Brünger AT; Brooks CL; Karplus M
    Proc Natl Acad Sci U S A; 1985 Dec; 82(24):8458-62. PubMed ID: 3866234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments.
    Tarek M; Tobias DJ
    Biophys J; 2000 Dec; 79(6):3244-57. PubMed ID: 11106628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global and local motions in ribonuclease A: a molecular dynamics study.
    Merlino A; Vitagliano L; Ceruso MA; Di Nola A; Mazzarella L
    Biopolymers; 2002 Nov; 65(4):274-83. PubMed ID: 12382288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional structure of a human pancreatic ribonuclease variant, a step forward in the design of cytotoxic ribonucleases.
    Pous J; Canals A; Terzyan SS; Guasch A; Benito A; Ribó M; Vilanova M; Coll M
    J Mol Biol; 2000 Oct; 303(1):49-60. PubMed ID: 11021969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exchange of individual hydrogens for a protein in a crystal and in solution.
    Bentley GA; Delepierre M; Dobson CM; Wedin RE; Mason SA; Poulsen FM
    J Mol Biol; 1983 Oct; 170(1):243-7. PubMed ID: 6631963
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural comparisons of the native and reactive-centre-cleaved forms of alpha 1-antitrypsin by neutron- and X-ray-scattering in solution.
    Smith KF; Harrison RA; Perkins SJ
    Biochem J; 1990 Apr; 267(1):203-12. PubMed ID: 2327980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution.
    Larson SB; Greenwood A; Cascio D; Day J; McPherson A
    J Mol Biol; 1994 Feb; 235(5):1560-84. PubMed ID: 8107092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.