These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 6955186)

  • 21. Isolation, identification and fibrolytic characteristics of rumen fungi grown with indigenous methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau.
    Wei YQ; Yang HJ; Luan Y; Long RJ; Wu YJ; Wang ZY
    J Appl Microbiol; 2016 Mar; 120(3):571-87. PubMed ID: 26910857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial ecology and activities in the rumen: Part II.
    Hobson PN; Wallace RJ
    Crit Rev Microbiol; 1982 May; 9(4):253-320. PubMed ID: 7049577
    [No Abstract]   [Full Text] [Related]  

  • 23. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate.
    Cunha CS; Veloso CM; Marcondes MI; Mantovani HC; Tomich TR; Pereira LGR; Ferreira MFL; Dill-McFarland KA; Suen G
    Syst Appl Microbiol; 2017 Dec; 40(8):492-499. PubMed ID: 29113689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rumen metabolism.
    Baldwin RL; Allison MJ
    J Anim Sci; 1983 Jul; 57 Suppl 2():461-77. PubMed ID: 6352592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of two techniques for counting cellulolytic rumen bacteria.
    van Gylswyk NO
    J Gen Microbiol; 1970 Feb; 60(2):191-7. PubMed ID: 4922669
    [No Abstract]   [Full Text] [Related]  

  • 26. In vitro methane formation and carbohydrate fermentation by rumen microbes as influenced by selected rumen ciliate species.
    Zeitz JO; Kreuzer M; Soliva CR
    Eur J Protistol; 2013 Aug; 49(3):389-99. PubMed ID: 23578814
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of regular or reduced-fat distillers grains with solubles on rumen methanogenesis and the rumen bacterial community.
    Castillo-Lopez E; Jenkins CJR; Aluthge ND; Tom W; Kononoff PJ; Fernando SC
    J Appl Microbiol; 2017 Dec; 123(6):1381-1395. PubMed ID: 28891118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of microbial synergism on fibre digestion in the rumen.
    Dehority BA
    Proc Nutr Soc; 1991 Aug; 50(2):149-59. PubMed ID: 1661009
    [No Abstract]   [Full Text] [Related]  

  • 29. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    MouriƱo F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro.
    Ranilla MJ; Jouany JP; Morgavi DP
    Lett Appl Microbiol; 2007 Dec; 45(6):675-80. PubMed ID: 17944841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical form of the diet in relation to rumen fermentation.
    Thomson DJ
    Proc Nutr Soc; 1972 Sep; 31(2):127-34. PubMed ID: 4563286
    [No Abstract]   [Full Text] [Related]  

  • 32. Degradation of lignified secondary cell walls of lucerne (Medicago sativa L.) by rumen fungi growing in methanogenic co-culture.
    Bootten TJ; Joblin KN; McArdle BH; Harris PJ
    J Appl Microbiol; 2011 Nov; 111(5):1086-96. PubMed ID: 21848807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of nitrate and molybdenum on sulfur utilization by rumen microorganisms.
    Spears JW; Bush LP; Ely DG
    J Dairy Sci; 1977 Dec; 60(12):1889-93. PubMed ID: 563877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the methanogen and bacterial communities of rumen environments: solid adherent, fluid and epimural.
    De Mulder T; Goossens K; Peiren N; Vandaele L; Haegeman A; De Tender C; Ruttink T; de Wiele TV; De Campeneere S
    FEMS Microbiol Ecol; 2017 Mar; 93(3):. PubMed ID: 28011597
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rumen development in lambs. I. Microbial digestion of starch and cellulose.
    Poe SE; Ely DG; Mitchell GE; Deweese WP; Glimp HA
    J Anim Sci; 1971 Apr; 32(4):740-3. PubMed ID: 5571558
    [No Abstract]   [Full Text] [Related]  

  • 36. Isolation of Cellulolytic Bacteria from the Rumen.
    Mitsumori M
    Methods Mol Biol; 2018; 1796():57-65. PubMed ID: 29856046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Isolation of pure cultures of obligate methane-oxidizing bacteria].
    Malashenko IuR; Kvasnikov EI; Romanovskaia VA; Bogachenko VN
    Mikrobiologiia; 1971; 40(4):724-9. PubMed ID: 5096618
    [No Abstract]   [Full Text] [Related]  

  • 38. Compositional and structural dynamics of the ruminal microbiota in dairy heifers and its relationship to methane production.
    Cunha CS; Marcondes MI; Veloso CM; Mantovani HC; Pereira LGR; Tomich TR; Dill-McFarland KA; Suen G
    J Sci Food Agric; 2019 Jan; 99(1):210-218. PubMed ID: 29851082
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation.
    Kamke J; Kittelmann S; Soni P; Li Y; Tavendale M; Ganesh S; Janssen PH; Shi W; Froula J; Rubin EM; Attwood GT
    Microbiome; 2016 Oct; 4(1):56. PubMed ID: 27760570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The propionate-activating system of rumen bacteria.
    Peters DS; Matrone G
    Biochim Biophys Acta; 1967 Jun; 137(3):478-83. PubMed ID: 6049944
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.