These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 6955308)
1. Formation of active site thiol esters of CoA transferase and the dependence of catalysis on specific binding interactions. Moore SA; Jencks WP J Biol Chem; 1982 Sep; 257(18):10893-907. PubMed ID: 6955308 [TBL] [Abstract][Full Text] [Related]
2. Model reactions for CoA transferase involving thiol transfer. Anhydride formation from thiol esters and carboxylic acids. Moore SA; Jencks WP J Biol Chem; 1982 Sep; 257(18):10882-92. PubMed ID: 6955307 [TBL] [Abstract][Full Text] [Related]
3. Role of binding energy with coenzyme A in catalysis by 3-oxoacid coenzyme A transferase. Whitty A; Fierke CA; Jencks WP Biochemistry; 1995 Sep; 34(37):11678-89. PubMed ID: 7547900 [TBL] [Abstract][Full Text] [Related]
4. Two functional domains of coenzyme A activate catalysis by coenzyme A transferase. Pantetheine and adenosine 3'-phosphate 5'-diphosphate. Fierke CA; Jencks WP J Biol Chem; 1986 Jun; 261(17):7603-6. PubMed ID: 3458707 [TBL] [Abstract][Full Text] [Related]
5. Reactions of acyl phosphates with carboxylate and thiol anions. Model reactions for CoA transferase involving anhydride formation. Moore SA; Jencks WP J Biol Chem; 1982 Sep; 257(18):10874-81. PubMed ID: 6955306 [TBL] [Abstract][Full Text] [Related]
6. Formation of stable anhydrides from CoA transferase and hydroxamic acids. Pickart CM; Jencks WP J Biol Chem; 1979 Sep; 254(18):9120-9. PubMed ID: 479182 [TBL] [Abstract][Full Text] [Related]
7. Specificity in transition state binding: the Pauling model revisited. Amyes TL; Richard JP Biochemistry; 2013 Mar; 52(12):2021-35. PubMed ID: 23327224 [TBL] [Abstract][Full Text] [Related]
8. Mechanism and specificity of succinyl-CoA:3-ketoacid coenzyme A transferase. White H; Jencks WP J Biol Chem; 1976 Mar; 251(6):1688-99. PubMed ID: 1254594 [TBL] [Abstract][Full Text] [Related]
9. Catalytic role of the conformational change in succinyl-CoA:3-oxoacid CoA transferase on binding CoA. Fraser ME; Hayakawa K; Brown WD Biochemistry; 2010 Dec; 49(48):10319-28. PubMed ID: 20977214 [TBL] [Abstract][Full Text] [Related]
10. Utilization of the inactivation rate of coenzyme A transferase by thiol reagents to determine properties of the enzyme-CoA intermediate. White H; Solomon F; Jencks WP J Biol Chem; 1976 Mar; 251(6):1700-7. PubMed ID: 1254595 [TBL] [Abstract][Full Text] [Related]
11. Dimeric pig heart succinate-coenzyme A transferase uses only one subunit to support catalysis. Lloyd AJ; Shoolingin-Jordan PM Biochemistry; 2001 Feb; 40(8):2455-67. PubMed ID: 11327867 [TBL] [Abstract][Full Text] [Related]
12. Isothermal titration calorimetric studies of Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase. Determinants of binding energy and catalytic discrimination among acyl-CoA and peptide ligands. Bhatnagar RS; Jackson-Machelski E; McWherter CA; Gordon JI J Biol Chem; 1994 Apr; 269(15):11045-53. PubMed ID: 8157630 [TBL] [Abstract][Full Text] [Related]
13. Role of active site binding interactions in 4-chlorobenzoyl-coenzyme A dehalogenase catalysis. Luo L; Taylor KL; Xiang H; Wei Y; Zhang W; Dunaway-Mariano D Biochemistry; 2001 Dec; 40(51):15684-92. PubMed ID: 11747444 [TBL] [Abstract][Full Text] [Related]
14. Mechanism-based fragmentation of coenzyme A transferase. Comparison of alpha 2-macroglobulin and coenzyme A transferase thiol ester reactions. Howard JB; Zieske L; Clarkson J; Rathe L J Biol Chem; 1986 Jan; 261(1):60-5. PubMed ID: 2416753 [TBL] [Abstract][Full Text] [Related]
15. Half-of-the-sites reactivity in the malate thiokinase reaction. Hersh LB; Peet M J Biol Chem; 1981 Feb; 256(4):1732-7. PubMed ID: 7462221 [TBL] [Abstract][Full Text] [Related]
16. Identification of the cysteine residue exposed by the conformational change in pig heart succinyl-CoA:3-ketoacid coenzyme A transferase on binding coenzyme A. Tammam SD; Rochet JC; Fraser ME Biochemistry; 2007 Sep; 46(38):10852-63. PubMed ID: 17718512 [TBL] [Abstract][Full Text] [Related]
17. Catalytic strategy of citrate synthase: subunit interactions revealed as a consequence of a single amino acid change in the oxaloacetate binding site. Kurz LC; Shah S; Frieden C; Nakra T; Stein RE; Drysdale GR; Evans CT; Srere PA Biochemistry; 1995 Oct; 34(41):13278-88. PubMed ID: 7577912 [TBL] [Abstract][Full Text] [Related]
18. Properties of succinyl-coenzyme A:D-citramalate coenzyme A transferase and its role in the autotrophic 3-hydroxypropionate cycle of Chloroflexus aurantiacus. Friedmann S; Alber BE; Fuchs G J Bacteriol; 2006 Sep; 188(18):6460-8. PubMed ID: 16952935 [TBL] [Abstract][Full Text] [Related]
19. Benzoyl-coenzyme A:glycine N-acyltransferase and phenylacetyl-coenzyme A:glycine N-acyltransferase from bovine liver mitochondria. Purification and characterization. Nandi DL; Lucas SV; Webster LT J Biol Chem; 1979 Aug; 254(15):7230-7. PubMed ID: 457678 [TBL] [Abstract][Full Text] [Related]
20. Modification and inactivation of CoA transferase by 2-nitro-5-(thiocyanato)benzoate. Kindman LA; Jencks WP Biochemistry; 1981 Sep; 20(18):5183-7. PubMed ID: 6945874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]