These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 6955783)
21. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Drazenovic J; Wang H; Roth K; Zhang J; Ahmed S; Chen Y; Bothun G; Wunder SL Biochim Biophys Acta; 2015 Feb; 1848(2):532-43. PubMed ID: 25445167 [TBL] [Abstract][Full Text] [Related]
22. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory. Xiang TX; Anderson BD Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607 [TBL] [Abstract][Full Text] [Related]
23. The thermodynamic properties of mixed phospholipid bilayers: a theoretical analysis. Mondat M; Georgallas A; Pink DA; Zuckermann MJ Can J Biochem Cell Biol; 1984 Aug; 62(8):796-802. PubMed ID: 6498593 [TBL] [Abstract][Full Text] [Related]
24. Phosphatidylcholine bilayers. A theoretical model which describes the main and the lower transitions. Scott HL Biochim Biophys Acta; 1981 Apr; 643(1):161-7. PubMed ID: 7236685 [TBL] [Abstract][Full Text] [Related]
25. Miscibility of acyl-chain defined phosphatidylcholines with N-palmitoyl sphingomyelin in bilayer membranes. Térová B; Slotte JP; Nyholm TK Biochim Biophys Acta; 2004 Dec; 1667(2):182-9. PubMed ID: 15581854 [TBL] [Abstract][Full Text] [Related]
26. Cooperativity and kinetics of phase transitions in nanopore-confined bilayers studied by differential scanning calorimetry. Alaouie AM; Smirnov AI Biophys J; 2005 Feb; 88(2):L11-3. PubMed ID: 15626698 [TBL] [Abstract][Full Text] [Related]
27. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Shah J; Duclos RI; Shipley GG Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196 [TBL] [Abstract][Full Text] [Related]
28. Organization and dynamics of pyrene and pyrene lipids in intact lipid bilayers. Photo-induced charge transfer processes. Barenholz Y; Cohen T; Korenstein R; Ottolenghi M Biophys J; 1991 Jul; 60(1):110-24. PubMed ID: 1883931 [TBL] [Abstract][Full Text] [Related]
29. NMR study of synthetic lecithin bilayers in the vicinity of the gel-liquid--crystal transition. Pope JM; Walker L; Cornell BA; Francis GW Biophys J; 1981 Aug; 35(2):509-20. PubMed ID: 7272448 [TBL] [Abstract][Full Text] [Related]
30. A calorimetric study of peptide-phospholipid interactions: the glucagon-dimyristoylphosphatidylcholine complex. Epand RM; Sturtevant JM Biochemistry; 1981 Aug; 20(16):4603-6. PubMed ID: 7295636 [TBL] [Abstract][Full Text] [Related]
31. Anisotropic rotation of bacteriorhodopsin in lipid membranes. Comparison of theory with experiment. Cherry RJ; Godfrey RE Biophys J; 1981 Oct; 36(1):257-76. PubMed ID: 7284552 [TBL] [Abstract][Full Text] [Related]
32. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures. Sierra MB; Pedroni VI; Buffo FE; Disalvo EA; Morini MA Colloids Surf B Biointerfaces; 2016 Jun; 142():199-206. PubMed ID: 26954086 [TBL] [Abstract][Full Text] [Related]
33. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
34. Calorimetric and theoretical studies of the effects of lindane on lipid bilayers of different acyl chain length. Sabra MC; Jørgensen K; Mouritsen OG Biochim Biophys Acta; 1995 Jan; 1233(1):89-104. PubMed ID: 7530493 [TBL] [Abstract][Full Text] [Related]
35. Volume properties of mixtures of lipophilin and dimyristoylphosphatidylcholine. Fodor D; Epand RM; Moscarello MA Biochim Biophys Acta; 1982 Dec; 693(1):27-33. PubMed ID: 7150594 [TBL] [Abstract][Full Text] [Related]
36. Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour. Koster KL; Maddocks KJ; Bryant G Eur Biophys J; 2003 May; 32(2):96-105. PubMed ID: 12734697 [TBL] [Abstract][Full Text] [Related]
37. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Clerc SG; Thompson TE Biophys J; 1995 Jun; 68(6):2333-41. PubMed ID: 7647237 [TBL] [Abstract][Full Text] [Related]
39. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
40. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]