These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 6958726)

  • 21. Crystallographic nature of fluoride in enameloids of fish.
    LeGeros RZ; Suga S
    Calcif Tissue Int; 1980; 32(2):169-74. PubMed ID: 6773634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical and crystallographic events in the caries process.
    LeGeros RZ
    J Dent Res; 1990 Feb; 69 Spec No():567-74; discussion 634-6. PubMed ID: 2179315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Infrared-spectroscopic studies of the carbonate apatite structure of dental hard tissues].
    Hesse A; Klinger G; Schmidt M; Schindhelm C; Berg W
    Stomatol DDR; 1976 Aug; 26(8):505-9. PubMed ID: 1068567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomimetic magnesium-carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger.
    Iafisco M; Ruffini A; Adamiano A; Sprio S; Tampieri A
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():212-9. PubMed ID: 24411371
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral.
    Featherstone JD; Mayer I; Driessens FC; Verbeeck RM; Heijligers HJ
    Calcif Tissue Int; 1983; 35(2):169-71. PubMed ID: 6850399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of heterogeneous apatites containing magnesium, fluoride, and carbonate.
    Okazaki M; LeGeros RZ
    Adv Dent Res; 1996 Nov; 10(2):252-9. PubMed ID: 9206345
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites.
    Lee DD; LeGeros RZ
    Calcif Tissue Int; 1985 Dec; 37(6):651-8. PubMed ID: 3937591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Age and gender changes of apatites from human hard tooth tissues].
    Pikhur OL; Ryzhak GA; Iordanishvili AK; Iankovskiĭ VV; D'iakonov MM
    Adv Gerontol; 2014; 27(4):776-9. PubMed ID: 25946859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative infrared spectroscopic study of hydroxide and carbonate absorption bands in spectra of shark enameloid, shark dentin, and a geological apatite.
    Dahm S; Risnes S
    Calcif Tissue Int; 1999 Dec; 65(6):459-65. PubMed ID: 10594165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two types of carbonate substitution in the apatite structure.
    LeGeros RZ; Trautz OR; Klein E; LeGeros JP
    Experientia; 1969 Jan; 25(1):5-7. PubMed ID: 5766584
    [No Abstract]   [Full Text] [Related]  

  • 31. Strontium ranelate changes the composition and crystal structure of the biological bone-like apatite produced in osteoblast cell cultures.
    Querido W; Campos AP; Martins Ferreira EH; San Gil RA; Rossi AM; Farina M
    Cell Tissue Res; 2014 Sep; 357(3):793-801. PubMed ID: 24859219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [ON THE PROPERTIES OF OCTACALCIUM PHOSPHATE, WHITLOCKIT AND CARBON APATITE. CONTRIBUTION TO THE CRYSTAL CHEMISTRY OF BIOLOGICAL HARD SUBSTANCES].
    NEWESELY H
    Dtsch Zahnarztl Z; 1965 Jun; 20():SUPPL:753-66. PubMed ID: 14310276
    [No Abstract]   [Full Text] [Related]  

  • 33. Carbonate substitution significantly affects the structure and mechanics of carbonated apatites.
    Wingender B; Azuma M; Krywka C; Zaslansky P; Boyle J; Deymier A
    Acta Biomater; 2021 Mar; 122():377-386. PubMed ID: 33444796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical stability of carbonate- and fluoride-containing apatites.
    LeGeros RZ; Tung MS
    Caries Res; 1983; 17(5):419-29. PubMed ID: 6577956
    [No Abstract]   [Full Text] [Related]  

  • 35. FTIR study of carbonate loss from carbonated apatites in the wide temperature range.
    Rau JV; Cesaro SN; Ferro D; Barinov SM; Fadeeva IV
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):441-7. PubMed ID: 15389504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. X-ray diffraction and in situ pressurization of dentine apatite reveals nanocrystal modulus stiffening upon carbonate removal.
    Forien JB; Uzuhashi J; Ohkubo T; Hono K; Luo L; Schwarcz HP; Deymier AC; Krywka C; Fleck C; Zaslansky P
    Acta Biomater; 2021 Jan; 120():91-103. PubMed ID: 32927090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystallinity, solubility, and dissolution rate behavior of fluoridated CO3 apatites.
    Okazaki M; Takahashi J; Kimura H; Aoba T
    J Biomed Mater Res; 1982 Nov; 16(6):851-60. PubMed ID: 7174711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Mineralogy of dental enamel in Laitila rural commune].
    Pärkö A
    Suom Hammaslaak Toim; 1970; 66(5):269-74. PubMed ID: 5275910
    [No Abstract]   [Full Text] [Related]  

  • 39. Theoretical detection of a dark contrast line in twinned apatite bicrystals and its possible correlation with the chemical properties of human dentin and enamel crystals.
    Brès EF; Waddington WG; Voegel JC; Barry JC; Frank RM
    Biophys J; 1986 Dec; 50(6):1185-93. PubMed ID: 3801577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study of carbonate determination in human teeth using Raman spectroscopy.
    Spizzirri PG; Cochrane NJ; Prawer S; Reynolds EC
    Caries Res; 2012; 46(4):353-60. PubMed ID: 22614169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.