These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 6960114)
1. Enhancement of the 7 alpha-dehydroxylase activity of a gram-positive intestinal anaerobe by Bacteroides and its significance in the 7-dehydroxylation of ursodeoxycholic acid. Hirano S; Masuda N J Lipid Res; 1982 Nov; 23(8):1152-8. PubMed ID: 6960114 [TBL] [Abstract][Full Text] [Related]
2. Formation of ursodeoxycholic acid from chenodeoxycholic acid by a 7 beta-hydroxysteroid dehydrogenase-elaborating Eubacterium aerofaciens strain cocultured with 7 alpha-hydroxysteroid dehydrogenase-elaborating organisms. MacDonald IA; Rochon YP; Hutchison DM; Holdeman LV Appl Environ Microbiol; 1982 Nov; 44(5):1187-95. PubMed ID: 6758698 [TBL] [Abstract][Full Text] [Related]
3. 7 alpha-Dehydroxylation of bile acids by resting cells of a Eubacterium lentum-like intestinal anaerobe, strain c-25. Masuda N; Oda H; Hirano S; Masuda M; Tanaka H Appl Environ Microbiol; 1984 Apr; 47(4):735-9. PubMed ID: 6721490 [TBL] [Abstract][Full Text] [Related]
4. Epimerization versus dehydroxylation of the 7 alpha-hydroxyl- group of primary bile acids: competitive studies with Clostridium absonum and 7 alpha-dehydroxylating bacteria (Eubacterium sp.). Macdonald IA; Hutchison DM J Steroid Biochem; 1982 Sep; 17(3):295-303. PubMed ID: 6957693 [TBL] [Abstract][Full Text] [Related]
5. Further observations on the in vitro metabolism of chenodeoxycholic acid and ursodeoxycholic acid. Albini E; Marca G; Mellerio G Arzneimittelforschung; 1982; 32(12):1554-7. PubMed ID: 6891595 [TBL] [Abstract][Full Text] [Related]
6. In vitro transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal flora, with particular reference to the mutual conversion between the two bile acids. Hirano S; Masuda N; Oda H J Lipid Res; 1981 Jul; 22(5):735-43. PubMed ID: 7288282 [TBL] [Abstract][Full Text] [Related]
7. 7 beta-Dehydroxylation of ursodeoxycholic acid by whole cells and cell extracts of the intestinal anaerobic bacterium, Eubacterium species V.P.I. 12708. White BA; Fricke RJ; Hylemon PB J Lipid Res; 1982 Jan; 23(1):145-53. PubMed ID: 7057103 [TBL] [Abstract][Full Text] [Related]
8. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid. Vico-Oton E; Volet C; Jacquemin N; Dong Y; Hapfelmeier S; Meibom KL; Bernier-Latmani R BMC Microbiol; 2024 Aug; 24(1):286. PubMed ID: 39090543 [TBL] [Abstract][Full Text] [Related]
9. Conversion of 7-ketolithocholic acid to ursodeoxycholic acid by human intestinal anaerobic microorganisms: interchangeability of chenodeoxycholic acid and ursodeoxycholic acid. Higashi S; Setoguchi T; Katsuki T Gastroenterol Jpn; 1979 Oct; 14(5):417-24. PubMed ID: 520764 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of bile acid 7-dehydroxylating bacteria from human feces. Takamine F; Imamura T Microbiol Immunol; 1995; 39(1):11-8. PubMed ID: 7783673 [TBL] [Abstract][Full Text] [Related]
11. Formation of urso- and ursodeoxy-cholic acids from primary bile acids by Clostridium absonum. Macdonald IA; Hutchison DM; Forrest TP J Lipid Res; 1981 Mar; 22(3):458-66. PubMed ID: 6940948 [TBL] [Abstract][Full Text] [Related]
12. Determination of ursodeoxycholic acid in serum by a new fluorometric enzymatic method using 7 beta-hydroxysteroid dehydrogenase from Clostridium absonum. Lianidou ES; Papastathopoulos DS; Siskos PA Anal Biochem; 1989 Jun; 179(2):341-6. PubMed ID: 2672876 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of primary bile acids by a 7 alpha-hydroxysteroid dehydrogenase elaborating Clostridium bifermentans soil isolate. Sutherland JD; Williams CN; Hutchison DM; Holdeman LV Can J Microbiol; 1987 Aug; 33(8):663-9. PubMed ID: 3480039 [TBL] [Abstract][Full Text] [Related]
14. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. Hirano S; Masuda N J Lipid Res; 1981 Sep; 22(7):1060-8. PubMed ID: 6946176 [TBL] [Abstract][Full Text] [Related]
15. Transformation of chenodeoxycholic acid and ursodeoxycholic acid by human intestinal bacteria. Fedorowski T; Salen G; Tint GS; Mosbach E Gastroenterology; 1979 Nov; 77(5):1068-73. PubMed ID: 488633 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of the 7 alpha-dehydroxylase activity of a gram-positive intestinal anaerobe by flavins. Masuda N; Oda H; Hirano S; Tanaka H Appl Environ Microbiol; 1983 Jan; 45(1):308-9. PubMed ID: 6824319 [TBL] [Abstract][Full Text] [Related]
17. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. Edenharder R; Knaflic T J Lipid Res; 1981 May; 22(4):652-8. PubMed ID: 7276738 [TBL] [Abstract][Full Text] [Related]
18. NADP-dependent 3 beta-, 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activities from a lecithinase-lipase-negative Clostridium species 25.11.c. Edenharder R; Pfützner M; Hammann R Biochim Biophys Acta; 1989 Mar; 1002(1):37-44. PubMed ID: 2923864 [TBL] [Abstract][Full Text] [Related]
19. Effect of bile acid oxazoline derivatives on microorganisms participating in 7 alpha-hydroxyl epimerization of primary bile acids. Macdonald IA; Sutherland JD; Cohen BI; Mosbach EH J Lipid Res; 1983 Dec; 24(12):1550-9. PubMed ID: 6366102 [TBL] [Abstract][Full Text] [Related]
20. The enzymic and chemical synthesis of ursodeoxycholic and chenodeoxycholic acid from cholic acid. Sutherland JD; Macdonald IA; Forrest TP Prep Biochem; 1982; 12(4):307-21. PubMed ID: 6961394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]