These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 696044)
1. Isolation of Bacillus thuringiensis for microbiological control of insects. Ali SA; Attia RM Zentralbl Bakteriol Naturwiss; 1978; 133(3):232-4. PubMed ID: 696044 [TBL] [Abstract][Full Text] [Related]
2. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of Bacillus thuringiensis spores to the tobacco hornworm, Manduca sexta. Schesser JH; Bulla LA Appl Environ Microbiol; 1978 Jan; 35(1):121-3. PubMed ID: 623457 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Raymond B; Elliot SL; Ellis RJ J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832 [TBL] [Abstract][Full Text] [Related]
6. Isolation and insecticidal effects of some bacteria from Euproctis chrysorrhoea L. (Lepidoptera: Lymantriidae). Yaman M; Demirbağ Z; Beldüz AO Acta Microbiol Pol; 2000; 49(3-4):217-24. PubMed ID: 11293654 [TBL] [Abstract][Full Text] [Related]
7. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. Dubovskiy IM; Krukova NA; Glupov VV J Invertebr Pathol; 2008 Jul; 98(3):360-2. PubMed ID: 18440019 [TBL] [Abstract][Full Text] [Related]
8. Isolation, geographical diversity and insecticidal activity of Bacillus thuringiensis from soils in Spain. Quesada-Moraga E; García-Tóvar E; Valverde-García P; Santiago-Alvarez C Microbiol Res; 2004; 159(1):59-71. PubMed ID: 15160608 [TBL] [Abstract][Full Text] [Related]
9. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. Kati H; Sezen K; Nalcacioglu R; Demirbag Z J Microbiol; 2007 Dec; 45(6):553-7. PubMed ID: 18176540 [TBL] [Abstract][Full Text] [Related]
10. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Salamitou S; Ramisse F; Brehélin M; Bourguet D; Gilois N; Gominet M; Hernandez E; Lereclus D Microbiology (Reading); 2000 Nov; 146 ( Pt 11)():2825-2832. PubMed ID: 11065361 [TBL] [Abstract][Full Text] [Related]
11. Susceptibility of Agrotis segetum (noctuidae) to Bacillus thuringiensis and analysis of midgut proteinases. Ben Hamadou-Charfi D; Sauer AJ; Abdelkefi-Mesrati L; Tounsi S; Jaoua S; Stephan D Prep Biochem Biotechnol; 2015; 45(5):411-20. PubMed ID: 24839868 [TBL] [Abstract][Full Text] [Related]
12. Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. El Khoury M; Azzouz H; Chavanieu A; Abdelmalak N; Chopineau J; Awad MK Arch Microbiol; 2014 Jun; 196(6):435-44. PubMed ID: 24715255 [TBL] [Abstract][Full Text] [Related]
13. The occurrence, biodiversity and toxicity of Bacillus thuringiensis strains isolated from the insect pest Lymantria dispar (Poland). Guz K; Bugla-Płoskońska G; Doroszkiewicz W Pol J Microbiol; 2009; 58(2):155-61. PubMed ID: 19824400 [TBL] [Abstract][Full Text] [Related]
14. Resistance to Bacillus thuringiensis by the Indian meal moth, Plodia interpunctella: comparison of midgut proteinases from susceptible and resistant larvae. Johnson DE; Brookhart GL; Kramer KJ; Barnett BD; McGaughey WH J Invertebr Pathol; 1990 Mar; 55(2):235-44. PubMed ID: 2181026 [TBL] [Abstract][Full Text] [Related]
15. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Porcar M; Navarro L; Jiménez-Peydró R J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139 [TBL] [Abstract][Full Text] [Related]
16. Relative activity of Bacillus thuringiensis var. kurstaki and B. thuringiensis var. israelensis against larvae of Aedes aegypti, Culex quinquefasciatus, trichoplusia ni, Heliothis zea, and Heliothis virescens. Ignoffo CM; Couch TL; Garcia C; Kroha MJ J Econ Entomol; 1981 Apr; 74(2):218-22. PubMed ID: 7320315 [No Abstract] [Full Text] [Related]
17. Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Jarrett P; Stephenson M Appl Environ Microbiol; 1990 Jun; 56(6):1608-14. PubMed ID: 2383006 [TBL] [Abstract][Full Text] [Related]
18. [Bioassays with entomopathogenic bacteria]. Marquez AM Rev Argent Microbiol; 1994; 26(3):150-5. PubMed ID: 7838980 [No Abstract] [Full Text] [Related]
19. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route. Fedhila S; Nel P; Lereclus D J Bacteriol; 2002 Jun; 184(12):3296-304. PubMed ID: 12029046 [TBL] [Abstract][Full Text] [Related]
20. Two new Brazilian isolates of Bacillus thuringiensis toxic to Anticarsia gemmatalis (Lepidoptera: Noctuidae). Fiuza LM; Schünemann R; Pinto LM; Zanettini MH Braz J Biol; 2012 May; 72(2):363-9. PubMed ID: 22735145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]