These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6964387)

  • 41. Depolarization-induced calcium uptake by vesicles in a highly enriched sarcolemma preparation from canine ventricle.
    Bartschat DK; Cyr DL; Lindenmayer GE
    J Biol Chem; 1980 Nov; 255(21):10044-7. PubMed ID: 6776107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Effects of sulfhydryl reagents on sodium-calcium exchange system in canine cardiac sarcolemmal vesicles].
    Hazama S
    Hokkaido Igaku Zasshi; 1983 Jul; 58(4):354-62. PubMed ID: 6313504
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characteristics of heart sarcolemmal calcium transport system and effect of protein kinase on sarcolemmal calcium accumulation.
    Sulakhe PV; St Louis PJ
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():241-7. PubMed ID: 201983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium-induced potassium pathway in sided erythrocyte membrane vesicles.
    Sze H; Solomon AK
    Biochim Biophys Acta; 1979 Jun; 554(1):180-94. PubMed ID: 454599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sodium-calcium ion exchange in cardiac membrane vesicles.
    Reeves JP; Sutko JL
    Proc Natl Acad Sci U S A; 1979 Feb; 76(2):590-4. PubMed ID: 284383
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles.
    Szebeni J
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(1-2):77-82. PubMed ID: 6278807
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Na(+)-Ca2+ exchangers from rod outer segments and cardiac sarcolemma: comparison of properties.
    Nicoll DA; Barrios BR; Philipson KD
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1212-6. PubMed ID: 1905482
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconstitution in phospholipid vesicles of calcium-activated potassium channel from outer renal medulla.
    Klaerke DA; Karlish SJ; Jørgensen PL
    J Membr Biol; 1987; 95(2):105-12. PubMed ID: 2437307
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium-dependent K+ efflux from rat submandibular gland. The effects of trifluoperazine and quinidine.
    Kurtzer RJ; Roberts ML
    Biochim Biophys Acta; 1982 Dec; 693(2):479-84. PubMed ID: 6818992
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temperature dependence of action of polymyxin B on Escherichia coli.
    Katsu T; Yoshimura S; Tsuchiya T; Fujita Y
    J Biochem; 1984 Jun; 95(6):1645-53. PubMed ID: 6088473
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of myocardial ischemia and nisoldipine pretreatment on the asymmetric distribution of phosphatidylethanolamine in a canine heart sarcolemmal preparation.
    Takahashi K; Kako KJ
    Biochem Med Metab Biol; 1986 Jun; 35(3):308-21. PubMed ID: 3718762
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the sodium pump and the background K+ channel in passive K+(Rb+) uptake by isolated cardiac sarcolemmal vesicles.
    Otero AS; Szabo G
    J Membr Biol; 1988 Sep; 104(3):253-63. PubMed ID: 2850364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium movements promoted by vesicles in a highly enriched sarcolemma preparation from canine ventricle. Calcium-calcium countertransport.
    Bartschat DK; Lindenmayer GE
    J Biol Chem; 1980 Oct; 255(20):9626-34. PubMed ID: 6776102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical potential dependence of Na+-sugar cotransport determined using TPP+ influx.
    Restrepo D; Kimmich GA
    Ann N Y Acad Sci; 1985; 456():77-9. PubMed ID: 3867314
    [No Abstract]   [Full Text] [Related]  

  • 55. Modulation of Ca2+-dependent K+ transport by modifications of the NAD+/NADH ratio in intact human red cells.
    Alvarez J; Camaleño JM; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1986 Apr; 856(2):408-11. PubMed ID: 2420363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ca2+ loading reduces the tensile strength of sarcolemmal vesicles shed from rabbit muscle.
    Nichol JA; Hutter OF
    J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):199-209. PubMed ID: 8735705
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Voltage-sensitive calcium flux promoted by vesicles in an isolated cardiac sarcolemma preparation.
    Schilling WP; Lindenmayer GE
    J Membr Biol; 1984; 79(2):163-73. PubMed ID: 6431112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Na+, K+, H+ and Cl- permeability properties of rabbit skeletal muscle sarcolemmal vesicles.
    Gilbert JR; Meissner G
    Arch Biochem Biophys; 1983 May; 223(1):9-23. PubMed ID: 6859866
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sodium and potassium permeability of membrane vesicles in a sarcolemma-enriched preparation from canine ventricle.
    Schilling WP; Schuil DW; Bagwell EE; Lindenmayer GE
    J Membr Biol; 1984; 77(2):101-14. PubMed ID: 6708087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. TPP+ inhibits Na+-stimulated Ca2+ efflux from brain mitochondria.
    Karadjov JS; Kudzina LYu ; Zinchenko VP
    Cell Calcium; 1986 Apr; 7(2):115-9. PubMed ID: 3708677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.