These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 6965035)
1. Distinction between normal and leukemic bone marrow by water protons nuclear magnetic resonance relaxation times. Shah S; Ranade SS; Kasturi SR; Phadke RS; Advani SH Magn Reson Imaging; 1982; 1(1):23-8. PubMed ID: 6965035 [TBL] [Abstract][Full Text] [Related]
2. Pulsed nuclear magnetic resonance studies of human bone marrow. Ranade SS; Shah S; Advani SH; Kasturi SR Physiol Chem Phys; 1977; 9(3):297-9. PubMed ID: 271308 [TBL] [Abstract][Full Text] [Related]
3. [MR relaxation times in diffuse bone marrow disorders: evaluation of their clinical usefulness in differentiation between leukemia and anemia]. Tanaka O; Ichikawa T; Kobayashi Y; Matsuura K; Nagai J; Takagi S Nihon Igaku Hoshasen Gakkai Zasshi; 1996 Jul; 56(8):539-45. PubMed ID: 8797343 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance imaging for monitoring relapse of acute myeloid leukemia. Henkelman RM; Messner H; Poon PY; Hinks RS; Stewart C; Curtis J; Minden M; Baker M Leuk Res; 1988; 12(10):811-6. PubMed ID: 3199840 [TBL] [Abstract][Full Text] [Related]
5. Magnetic resonance imaging of the bone marrow in patients with leukemia, aplastic anemia, and lymphoma. Olson DO; Shields AF; Scheurich CJ; Porter BA; Moss AA Invest Radiol; 1986 Jul; 21(7):540-6. PubMed ID: 3460974 [TBL] [Abstract][Full Text] [Related]
6. Magnetic resonance imaging of the bone marrow in patients with acute leukemia during and after chemotherapy. Changes in T1 relaxation. Jensen KE; Grundtvig Sørensen P; Thomsen C; Christoffersen P; Henriksen O; Karle H Acta Radiol; 1990 Jul; 31(4):361-9. PubMed ID: 2206692 [TBL] [Abstract][Full Text] [Related]
7. A method for chemical shift imaging: demonstration of bone marrow involvement with proton chemical shift imaging. Sepponen RE; Sipponen JT; Tanttu JI J Comput Assist Tomogr; 1984 Aug; 8(4):585-7. PubMed ID: 6330183 [TBL] [Abstract][Full Text] [Related]
8. Localized in vivo proton spectroscopy of the bone marrow in patients with leukemia. Jensen KE; Jensen M; Grundtvig P; Thomsen C; Karle H; Henriksen O Magn Reson Imaging; 1990; 8(6):779-89. PubMed ID: 2266805 [TBL] [Abstract][Full Text] [Related]
9. Leukemic red bone marrow changes assessed by magnetic resonance imaging and localized 1H spectroscopy. Schick F; Einsele H; Bongers H; Jung WI; Skalej M; Duda S; Ehninger G; Lutz O Ann Hematol; 1993 Jan; 66(1):3-13. PubMed ID: 8381677 [TBL] [Abstract][Full Text] [Related]
10. Differential nucleolus organizer activity in normal and leukemic bone marrow. Arden KC; Johnston DA; Cork A; Pathak S Am J Hematol; 1989 Mar; 30(3):164-73. PubMed ID: 2464925 [TBL] [Abstract][Full Text] [Related]
11. Lipid selective MR imaging and localized 1H spectroscopy of bone marrow during therapy of leukemia. Schick F; Einsele H; Lutz O; Claussen CD Anticancer Res; 1996; 16(3B):1545-51. PubMed ID: 8694524 [TBL] [Abstract][Full Text] [Related]
12. Sequential quantitative MR analysis of bone marrow: differences during treatment of lymphoid versus myeloid leukemia. Vande Berg BC; Michaux L; Scheiff JM; Malghem J; Lecouvet FE; Bourgois MP; Ferrant A; Michaux JL; Maldague BE Radiology; 1996 Nov; 201(2):519-23. PubMed ID: 8888252 [TBL] [Abstract][Full Text] [Related]
13. Clinical significance of magnetic resonance imaging of bone marrow in patients with leukemia. Wang J; Zhang X; Niu J J Tongji Med Univ; 2001; 21(3):242-5. PubMed ID: 12539590 [TBL] [Abstract][Full Text] [Related]
14. Prolonged bone marrow T1-relaxation in acute leukaemia. In vivo tissue characterization by magnetic resonance imaging. Thomsen C; Sørensen PG; Karle H; Christoffersen P; Henriksen O Magn Reson Imaging; 1987; 5(4):251-7. PubMed ID: 3477675 [TBL] [Abstract][Full Text] [Related]
15. Bone marrow stromal deficiency in acute myeloid leukemia in mice. Ben-Ishay Z; Prindull G; Borenstein A; Sharon S Leuk Res; 1984; 8(6):1057-64. PubMed ID: 6595479 [TBL] [Abstract][Full Text] [Related]
16. Detection of minimal residual disease in acute myeloid leukemia. Gerhartz HH; Schmetzer H Leukemia; 1990 Jul; 4(7):508-16. PubMed ID: 1695705 [TBL] [Abstract][Full Text] [Related]
17. The distribution of lysozyme, alpha-1-antitrypsin, and alpha-1-antichymotrypsin in normal hematopoietic cells and in myeloid leukemias: an immunoperoxidase study on cytocentrifuge preparations, smears, and paraffin sections. Krugliak L; Meyer PR; Taylor CR Am J Hematol; 1986 Jan; 21(1):99-109. PubMed ID: 3518416 [TBL] [Abstract][Full Text] [Related]
18. Value of correlation of cell type and T1 values to clinical magnetic resonance imaging of bone marrow. Ranade SS; Trivedi PN; Bandivdekar AS Physiol Chem Phys Med NMR; 1988; 20(2):159-64. PubMed ID: 3222351 [No Abstract] [Full Text] [Related]
19. Complete mimicry: a case of alveolar rhabdomyosarcoma masquerading as acute leukemia. Imataki O; Uemura M; Uchida S; Yokokura S; Takeuchi A; Ishikawa R; Kondo A; Seo K; Kadowaki N Diagn Pathol; 2017 Nov; 12(1):77. PubMed ID: 29096655 [TBL] [Abstract][Full Text] [Related]
20. Recognition of clonogenic leukemic cells, remission bone marrow and HLA-identical donor bone marrow by CD8+ or CD4+ minor histocompatibility antigen-specific cytotoxic T lymphocytes. Faber LM; van der Hoeven J; Goulmy E; Hooftman-den Otter AL; van Luxemburg-Heijs SA; Willemze R; Falkenburg JH J Clin Invest; 1995 Aug; 96(2):877-83. PubMed ID: 7635982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]