These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6965170)

  • 1. Saccadic eye movements in frontal lesion and posthemispherectomy in humans. An electro-oculographic study.
    Bogacz J; Bottinelli MD; Pebet M; Bogacz A
    Acta Neurol Latinoam; 1981; 27(1-2):61-74. PubMed ID: 6965170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials.
    Yamamoto J; Ikeda A; Satow T; Matsuhashi M; Baba K; Yamane F; Miyamoto S; Mihara T; Hori T; Taki W; Hashimoto N; Shibasaki H
    Brain; 2004 Apr; 127(Pt 4):873-87. PubMed ID: 14960503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The pontine reticular formation syndrome. Physiopathologic data on voluntary eye movement abnormalities].
    Pierrot-Deseilligny C; Chain F; Lhermitte F
    Rev Neurol (Paris); 1982; 138(6-7):517-32. PubMed ID: 7156638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Difficulty in eye opening following left hemispheric infarction-- causative lesion and pathophysiology of abnormalities of the eye and eyelids movements].
    Waragai M; Shinotoh H; Kaneko M; Hattori T
    Rinsho Shinkeigaku; 1996 Apr; 36(4):577-83. PubMed ID: 8810853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eye movements in patients with absent voluntary horizontal gaze.
    Baloh RW; Furman J; Yee RD
    Ann Neurol; 1985 Mar; 17(3):283-6. PubMed ID: 3873208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The dorso-mesencephalic syndrome. Electrooculographic study of 2 clinical cases].
    Safran AB; Gauthier G; Safran E
    J Fr Ophtalmol; 1983; 6(6-7):581-7. PubMed ID: 6663029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracerebral dynamics of saccade generation in the human frontal eye field and supplementary eye field.
    Lachaux JP; Hoffmann D; Minotti L; Berthoz A; Kahane P
    Neuroimage; 2006 May; 30(4):1302-12. PubMed ID: 16412667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cortical control of saccadic eye movements: a clinical electrophysiological study of antisaccades].
    Okiyama R; Shimizu N; Mashiko T
    No To Shinkei; 2002 Sep; 54(9):803-10. PubMed ID: 12428366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
    Munoz DP; Armstrong IT; Hampton KA; Moore KD
    J Neurophysiol; 2003 Jul; 90(1):503-14. PubMed ID: 12672781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An area for vergence eye movement in primate frontal cortex.
    Gamlin PD; Yoon K
    Nature; 2000 Oct; 407(6807):1003-7. PubMed ID: 11069179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles underlying real-time nystagmus analysis of horizontal and vertical eye movements recorded with electro-, infra-red-, or video-oculographic techniques.
    Allum JH; Honegger F; Troescher M
    J Vestib Res; 1998; 8(6):449-63. PubMed ID: 9842515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic coding of vertical facilitated vergence by premotor saccadic burst neurons.
    Van Horn MR; Cullen KE
    J Neurophysiol; 2008 Oct; 100(4):1967-82. PubMed ID: 18632878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccades induced by stimulation of the frontal eye fields: interaction with voluntary and reflexive eye movements.
    Marrocco RT
    Brain Res; 1978 May; 146(1):23-34. PubMed ID: 417755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electro-oculographic study of a case of abolition of horizontal saccades with viscosity of eye movements in hereditary cerebellar degeneration].
    Cambier J; Masson M; Prier S
    Rev Neurol (Paris); 1978; 134(8-9):461-70. PubMed ID: 749123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccades in adult Niemann-Pick disease type C reflect frontal, brainstem, and biochemical deficits.
    Abel LA; Walterfang M; Fietz M; Bowman EA; Velakoulis D
    Neurology; 2009 Mar; 72(12):1083-6. PubMed ID: 19307542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target selection by the frontal cortex during coordinated saccadic and smooth pursuit eye movements.
    Srihasam K; Bullock D; Grossberg S
    J Cogn Neurosci; 2009 Aug; 21(8):1611-27. PubMed ID: 18823247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Measurement of the latencies of voluntary and corrective ocular saccades. Value in otoneurology].
    Vitte E; Ulmer E; Chaumette A; Frachet B; Freyss G; Pialoux P
    Ann Otolaryngol Chir Cervicofac; 1983; 100(2):85-97. PubMed ID: 6847074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Equipment and technic allowing a quantitative study of pursuit eye movements and saccadic movements].
    Ulmer E; Freyss G
    Ann Otolaryngol Chir Cervicofac; 1983; 100(5):319-26. PubMed ID: 6881819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficits of smooth-pursuit eye movement after unilateral frontal lobe lesions.
    Morrow MJ; Sharpe JA
    Ann Neurol; 1995 Apr; 37(4):443-51. PubMed ID: 7717680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatio-temporal brain dynamics underlying saccade execution, suppression, and error-related feedback.
    Herdman AT; Ryan JD
    J Cogn Neurosci; 2007 Mar; 19(3):420-32. PubMed ID: 17335391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.