These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6966523)

  • 21. Uncrossed disynaptic inhibition of second-order vestibular neurons and its interaction with monosynaptic excitation from vestibular nerve afferent fibers in the frog.
    Straka H; Dieringer N
    J Neurophysiol; 1996 Nov; 76(5):3087-101. PubMed ID: 8930257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes.
    Antal M; Matsumoto N; Székely G
    J Comp Neurol; 1986 Apr; 246(2):238-53. PubMed ID: 3485664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular analysis of directional sensitivity of tectal neurons of the frog.
    Hoshino N; Matsumoto N
    Brain Res; 2003 Mar; 966(2):185-93. PubMed ID: 12618342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tectal afferents monosynaptically activate neurons in the pigeon isthmo-optic nucleus.
    Li WC; Hu J; Wang SR
    Brain Res Bull; 1999 Jun; 49(3):203-8. PubMed ID: 10435784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nigral inhibitory termination on efferent neurons of the superior colliculus: an intracellular horseradish peroxidase study in the cat.
    Karabelas AB; Moschovakis AK
    J Comp Neurol; 1985 Sep; 239(3):309-29. PubMed ID: 2995462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Existence of a non-retinotopic contralateral retino-tectal visual projection in the normal frog Rana esculenta L].
    Gaillard F; Galand G
    C R Acad Hebd Seances Acad Sci D; 1978 Dec; 287(16):1405-8. PubMed ID: 114313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro brain slice studies of the rat's dorsal nucleus of the lateral lemniscus. I. Membrane and synaptic response properties.
    Wu SH; Kelly JB
    J Neurophysiol; 1995 Feb; 73(2):780-93. PubMed ID: 7760134
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Responses of the optic tectum to telencephalic stimulation in catfish.
    Lee LT; Bullock TH
    Brain Behav Evol; 1990; 35(6):313-24. PubMed ID: 2245312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chattering and differential signal processing in identified motion-sensitive neurons of parallel visual pathways in the chick tectum.
    Luksch H; Karten HJ; Kleinfeld D; Wessel R
    J Neurosci; 2001 Aug; 21(16):6440-6. PubMed ID: 11487668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intracellular and current source density analysis of pretectal input to the optic tectum of the frog.
    Li XH; Kang HJ; Xu ML; Mastumoto N
    Neurosci Bull; 2010 Oct; 26(5):371-80. PubMed ID: 20882063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system.
    Kogo N; Ariel M
    J Neurophysiol; 1997 Aug; 78(2):614-27. PubMed ID: 9307099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular and current source density analyses of somatosensory input to the optic tectum of the frog.
    Tsurudome K; Li X; Matsumoto N
    Brain Res; 2005 Dec; 1064(1-2):32-41. PubMed ID: 16289401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sources of electrical transients in tectal neuropil of the frog, Rana pipiens.
    Grant AC; Lettvin JY
    Brain Res; 1991 Sep; 560(1-2):106-21. PubMed ID: 1760719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms.
    Kim YI; Dudek FE
    J Physiol; 1991 Dec; 444():269-87. PubMed ID: 1688029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep neurons in piriform cortex. I. Morphology and synaptically evoked responses including a unique high-amplitude paired shock facilitation.
    Tseng GF; Haberly LB
    J Neurophysiol; 1989 Aug; 62(2):369-85. PubMed ID: 2769336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones.
    Andreasen M; Lambert JD
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):441-62. PubMed ID: 9518704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-monotonic decay of excitatory synaptic transmission in the frog optic tectum following repetitive stimulation of the optic nerve in vitro.
    Atzori M; Nistri A
    Exp Brain Res; 1994; 102(2):287-96. PubMed ID: 7705506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological properties and synaptic responses of cells in the trigeminal principal sensory nucleus of postnatal rats.
    Lo FS; Guido W; Erzurumlu RS
    J Neurophysiol; 1999 Nov; 82(5):2765-75. PubMed ID: 10561443
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An eye-tectum preparation allowing routine whole-cell recordings of neuronal responses to visual stimuli in frog.
    Svirskis G; Svirskiene N; Gutmaniene N
    J Neurosci Methods; 2009 May; 180(1):22-8. PubMed ID: 19427525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.