BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6966792)

  • 1. Intracellular potassium activity in epithelial cells of frog fundic gastric mucosa.
    Schettino T; Curci S
    Pflugers Arch; 1980 Jan; 383(2):99-103. PubMed ID: 6966792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Intracellular activity of Cl- measured with microelectrodes selective for Cl- in superficial epithelial cells of gastric mucosa at "rest"].
    Schettino T; Signorile G; Curci S
    Boll Soc Ital Biol Sper; 1984 Jan; 60(1):131-7. PubMed ID: 6608364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of histamine on the basolateral K+ conductance of frog stomach oxyntic cells and surface epithelial cells.
    Debellis L; Curci S; Frömter E
    Am J Physiol; 1990 Apr; 258(4 Pt 1):G631-6. PubMed ID: 2333976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the basolateral K+ conductance of the epithelial cells in frog gastric fundus mucosa.
    Curci S; Debellis L; Frömter E
    J Intern Med Suppl; 1990; 732():27-30. PubMed ID: 2383322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of external sodium on intracellular chloride activity in the surface cells of frog gastric mucosa. Microelectrode studies.
    Curci S; Schettino T
    Pflugers Arch; 1984 Jun; 401(2):152-9. PubMed ID: 6332304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histamine reduces Cl- activity in surface epithelial cells of frog gastric mucosa. Suggestive evidence for ionic coupling between surface epithelial and oxyntic cells.
    Curci S; Schettino T; Frömter E
    Pflugers Arch; 1986 Feb; 406(2):204-11. PubMed ID: 3485790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.
    DeLong J; Civan MM
    J Membr Biol; 1983; 72(3):183-93. PubMed ID: 6406672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle.
    Bolton TB; Vaughan-Jones RD
    J Physiol; 1977 Sep; 270(3):801-33. PubMed ID: 20501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport properties of the basolateral membrane of the oxyntic cells in frog fundic gastric mucosa.
    Schettino T; Trischitta F
    Pflugers Arch; 1989 Aug; 414(4):469-76. PubMed ID: 2798043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potassium efflux in heart muscle during activity: extracellular accumulation and its implications.
    Kline RP; Morad M
    J Physiol; 1978 Jul; 280():537-58. PubMed ID: 308540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium.
    Wills NK
    J Physiol; 1985 Jan; 358():433-45. PubMed ID: 2580086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct influence of the sodium pump on the membrane potential of vomeronasal chemoreceptor neurones in frog.
    Trotier D; Døving KB
    J Physiol; 1996 Feb; 490 ( Pt 3)(Pt 3):611-21. PubMed ID: 8683461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical profiles in the corneal epithelium.
    Klyce SD
    J Physiol; 1972 Oct; 226(2):407-29. PubMed ID: 4538944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3 m KCl.
    Nelson DJ; Ehrenfeld J; Lindemann B
    J Membr Biol; 1978; 40 Spec No():91-119. PubMed ID: 731680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibers.
    Miura DS; Hoffman BF; Rosen MR
    J Gen Physiol; 1977 Apr; 69(4):463-74. PubMed ID: 853287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular potassium accumulation in voltage-clamped frog ventricular muscle.
    Cleemann L; Morad M
    J Physiol; 1979 Jan; 286():83-111. PubMed ID: 312322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).
    Costa PM; Fernandes PL; Ferreira HG; Ferreira KT; Giraldez F
    J Physiol; 1987 Dec; 393():1-17. PubMed ID: 2451735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology of phagocytic membranes: intracellular K+ activity and K+ equilibrium potential in macrophage polykaryons.
    Persechini PM; Oliveira-Castro GM
    Biochim Biophys Acta; 1987 May; 899(2):213-21. PubMed ID: 3580367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface epithelial cells of amphibian stomach as investigated with Cl- selective microelectrodes.
    Curci S; Onorato M; Schettino T
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():189-94. PubMed ID: 6331836
    [No Abstract]   [Full Text] [Related]  

  • 20. Inward-rectifier potassium channels in basolateral membranes of frog skin epithelium.
    Urbach V; van Kerkhove E; Harvey BJ
    J Gen Physiol; 1994 Apr; 103(4):583-604. PubMed ID: 8057079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.