These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 6967019)
1. 13C NMR as a probe for the study of enzyme-catalysed reactions: mechanism of action of 5-aminolevulinic acid dehydratase. Jordan PM; Seehra JS FEBS Lett; 1980 Jun; 114(2):283-6. PubMed ID: 6967019 [No Abstract] [Full Text] [Related]
2. The synthesis of porphobilinogen by immobilized delta-aminolevulinic acid dehydratase. Gurne D; Shemin D Methods Enzymol; 1976; 44():844-9. PubMed ID: 1088174 [No Abstract] [Full Text] [Related]
3. Proceedings: Structure, function and mechanism of delta-aminolevulinic acid dehydratase. Shemin D J Biochem; 1976 Apr; 79(4):37P-38P. PubMed ID: 1084342 [No Abstract] [Full Text] [Related]
4. Lysine as the substrate binding site of porphobilinogen synthase of Rhodopseudomonas spheroides. Nandi DL Z Naturforsch C Biosci; 1978; 33(9-10):799-802. PubMed ID: 153667 [TBL] [Abstract][Full Text] [Related]
5. 13C NMR studies of porphobilinogen synthase: observation of intermediates bound to a 280,000-dalton protein. Jaffe EK; Markham GD Biochemistry; 1987 Jul; 26(14):4258-64. PubMed ID: 3663587 [TBL] [Abstract][Full Text] [Related]
6. Stereochemistry and mechanism of the conversion of 5-aminolaevulinic acid into porphobilinogen catalysed by porphobilinogen synthase. Goodwin CE; Leeper FJ Org Biomol Chem; 2003 May; 1(9):1443-6. PubMed ID: 12926268 [TBL] [Abstract][Full Text] [Related]
7. 15N and 13C NMR studies of ligands bound to the 280,000-dalton protein porphobilinogen synthase elucidate the structures of enzyme-bound product and a Schiff base intermediate. Jaffe EK; Markham GD; Rajagopalan JS Biochemistry; 1990 Sep; 29(36):8345-50. PubMed ID: 2252894 [TBL] [Abstract][Full Text] [Related]
8. Zinc and cysteine residues in the active site of bovine liver delta-aminolevulinic acid dehydratase. Tsukamoto I; Yoshinaga T; Sano S Int J Biochem; 1980; 12(5-6):751-6. PubMed ID: 7450129 [No Abstract] [Full Text] [Related]
9. Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Xie L; Eiteman MA; Altman E Biotechnol Lett; 2003 Oct; 25(20):1751-5. PubMed ID: 14626421 [TBL] [Abstract][Full Text] [Related]
10. Automated assay for delta-aminolevulinic acid dehydratase. Gore MG; Jordan PM; Chaudhry AG Anal Biochem; 1978 Jun; 87(1):141-7. PubMed ID: 307928 [No Abstract] [Full Text] [Related]
11. Porphyrin synthesis: some particular approaches. Shemin D Ann N Y Acad Sci; 1975 Apr; 244():348-55. PubMed ID: 1079708 [No Abstract] [Full Text] [Related]
12. On the formation of the mixed pyrrole catalysed by porphobilinogen synthase from Rhodobacter spheroides. Lüönd RM; Neier R Biochim Biophys Acta; 1996 Feb; 1289(1):83-6. PubMed ID: 8605237 [TBL] [Abstract][Full Text] [Related]
13. 5-Aminolevulinic acid dehydratase. The role of sulphydryl groups in 5-aminolevulinic acid dehydratase from bovine liver. Seehra JS; Gore MG; Chaudhry AG; Jordan PM Eur J Biochem; 1981 Feb; 114(2):263-9. PubMed ID: 7215355 [TBL] [Abstract][Full Text] [Related]
14. Evidence for histidine as another functional group of delta-aminolevulinic acid dehydratase from beef liver. Tsukamoto I; Yoshinaga T; Sano S Biochem Biophys Res Commun; 1975 Nov; 67(1):294-300. PubMed ID: 1014 [No Abstract] [Full Text] [Related]
15. Affinity labelling of 5-aminolevulinic acid dehydratase with 2-bromo-3-(5-imidazolyl)propionic acid. Beyersmann D; Cox M Biochim Biophys Acta; 1984 Jul; 788(2):162-6. PubMed ID: 6430344 [TBL] [Abstract][Full Text] [Related]