These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6967019)

  • 21. Molecular cloning of the 5-aminolevulinic acid dehydratase gene from Rhodobacter sphaeroides.
    Delaunay AM; Huault C; Balangé AP
    J Bacteriol; 1991 Apr; 173(8):2712-5. PubMed ID: 2013584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stereochemical studies on the formation of porphobilinogen.
    Chaudhry AG; Jordan PM
    Biochem Soc Trans; 1976; 4(4):760-1. PubMed ID: 1001759
    [No Abstract]   [Full Text] [Related]  

  • 23. 5-Aminolevulinic acid dehydratase: alkylation of an essential thiol in the bovine-liver enzyme by active-site-directed reagents.
    Seehra JS; Jordan PM
    Eur J Biochem; 1981 Jan; 113(3):435-46. PubMed ID: 7215335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Features of porphobilinogen synthesis from delta-aminolevulinic acid in the tissues of the internal organs of rats].
    Liubchenko PN; Gladyshev BN; Ostrum IuZ; Avramenko MM
    Biull Eksp Biol Med; 1980 Dec; 90(12):730-2. PubMed ID: 7470612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnetic resonance studies on the active site and metal centers of Bradyrhizobium japonicum porphobilinogen synthase.
    Petrovich RM; Jaffe EK
    Biochemistry; 1997 Oct; 36(43):13421-7. PubMed ID: 9341235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular properties of 5-aminolevulinic acid dehydratase from Spinacia oleracea.
    Liedgens W; Lütz C; Schneider HA
    Eur J Biochem; 1983 Sep; 135(1):75-9. PubMed ID: 6884359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The resolution of two kinetically distinct types of 5,5'-dithiobis-(2-nitrobenzoic acid)-titrating groups in 5-aminolaevulinate dehydratase from cow liver.
    Gore MG; Jordan PM; Chaudhry AG
    Biochem Soc Trans; 1976; 4(4):762. PubMed ID: 1001760
    [No Abstract]   [Full Text] [Related]  

  • 28. Synthesis of the pyrrole porphobilinogen by sepharose-linked -aminolevulinic acid dehydratase.
    Gurne D; Shemin D
    Science; 1973 Jun; 180(4091):1188-90. PubMed ID: 4707065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ontogeny of 5-aminolevulinic dehydratase and porphobilinogen deaminase activities in the yolk sac membrane and liver of chick embryos.
    Pauza NL; Sopena de Kracoff YE; Ferramola de Sancovich AM; Sancovich HA
    Br Poult Sci; 2002 May; 43(2):196-203. PubMed ID: 12047082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of zinc with special reference to the essential thiol groups in delta-aminolevulinic acid dehydratase of bovine liver.
    Tsukamoto I; Yoshinaga T; Sano S
    Biochim Biophys Acta; 1979 Sep; 570(1):167-78. PubMed ID: 486501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of lysine at the active site of human 5-aminolaevulinate dehydratase.
    Gibbs PN; Jordan PM
    Biochem J; 1986 Jun; 236(2):447-51. PubMed ID: 3092810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure of yeast 5-aminolaevulinic acid dehydratase complexed with the inhibitor 5-hydroxylaevulinic acid.
    Erskine PT; Coates L; Newbold R; Brindley AA; Stauffer F; Beaven GD; Gill R; Coker A; Wood SP; Warren MJ; Shoolingin-Jordan PM; Neier R; Cooper JB
    Acta Crystallogr D Biol Crystallogr; 2005 Sep; 61(Pt 9):1222-6. PubMed ID: 16131755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of Biomass and 5-Aminolevulinic Acid Production by Rhodobacter sphaeroides ATCC17023 via Response Surface Methodology.
    Liu S; Zhang G; Li J; Li X; Zhang J
    Appl Biochem Biotechnol; 2016 Jun; 179(3):444-58. PubMed ID: 26875086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alteration of activities of delta-aminolevulinic acid synthase, delta-aminolevulinic acid dehydratase and delta-aminolevulinic acid dehydratase inhibitor in the bone marrow cells of lead poisoned rats.
    Kondo M; Kajimoto M; Urata G
    Exp Hematol; 1983 Apr; 11(4):324-31. PubMed ID: 6840227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measurement of δ-aminolevulinate dehydratase activity.
    Fujita H
    Curr Protoc Toxicol; 2001 May; Chapter 8():Unit 8.6. PubMed ID: 23045063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Succinylacetone and delta-aminolevulinic acid dehydratase in hereditary tyrosinemia: immunochemical study of the enzyme.
    Sassa S; Fujita H; Kappas A
    Pediatrics; 1990 Jul; 86(1):84-6. PubMed ID: 2359685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational insights into the mechanism of porphobilinogen synthase.
    Erdtman E; Bushnell EA; Gauld JW; Eriksson LA
    J Phys Chem B; 2010 Dec; 114(50):16860-70. PubMed ID: 21090799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain.
    Chauhan S; O'Brian MR
    J Bacteriol; 1993 Nov; 175(22):7222-7. PubMed ID: 8226669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Induction of delta-aminolevulinic acid synthase and delta-aminolevulinic acid dehydratase in normal human bone marrow cultures.
    Shionoya S; Urabe A; Hashimoto Y; Kondo M; Urata G
    Stem Cells (1981); 1982; 2(3):145-54. PubMed ID: 7163916
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of porphobilinogen synthase. Requirement of Zn2+ for enzyme activity.
    Bevan DR; Bodlaender P; Shemin D
    J Biol Chem; 1980 Mar; 255(5):2030-5. PubMed ID: 7354072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.