These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Correlation of membrane-potential-sensing carotenoid to pigment-protein complex II in Rhodopseudomonas sphaeroides. Matsuura K; Ishikawa T; Nishimura M Biochim Biophys Acta; 1980 May; 590(3):339-44. PubMed ID: 6966511 [TBL] [Abstract][Full Text] [Related]
3. The carotenoid shift in Rhodopseudomonas sphaeroides. Change induced under continuous illumination. Holmes NG; Crofts AR Biochim Biophys Acta; 1977 Jul; 461(1):141-50. PubMed ID: 301749 [TBL] [Abstract][Full Text] [Related]
4. [Ubiquinone reduction, proton absorption and the formation of a transmembrane electric potential differential induced by a series of light bursts in the chromatophores of Rhodopseudomonas sphaeroides]. VerkhovskiÄ MI; Grishanova NP; Kaurov BS; Shinkarev VP Nauchnye Doki Vyss Shkoly Biol Nauki; 1980; (8):35-7. PubMed ID: 6250645 [No Abstract] [Full Text] [Related]
5. Light- and diffusion-potential-induced shift of carotenoid spectrum in reconstituted vesicles of Rhodopseudomonas sphaeroides. Matsuura K; Nishimura M Biochim Biophys Acta; 1977 Dec; 462(3):700-5. PubMed ID: 304357 [TBL] [Abstract][Full Text] [Related]
6. The resonance Raman spectrum of carotenoids as an intrinsic probe for membrane potential. Oscillatory changes in the spectrum of neurosporene in the chromatophores of Rhodopseudomonas sphaeroides. Koyama Y; Long RA; Martin WG; Carey PR Biochim Biophys Acta; 1979 Oct; 548(1):153-60. PubMed ID: 314816 [TBL] [Abstract][Full Text] [Related]
7. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Monger TG; Cogdell RJ; Parson WW Biochim Biophys Acta; 1976 Oct; 449(1):136-53. PubMed ID: 823977 [TBL] [Abstract][Full Text] [Related]
8. The effect of diaminodurene on the delayed light and the carotenoid band shift in Rhodopseudomonas spheroides. Sherman LA Biochim Biophys Acta; 1972; 283(1):67-78. PubMed ID: 4539374 [No Abstract] [Full Text] [Related]
9. H+ uptake by chromatophores from Rhodopseudomonas spheroides. The relation between rapid H+ uptake and the H+ pump. Cogdell RJ; Crofts AR Biochim Biophys Acta; 1974 May; 347(2):264-72. PubMed ID: 4546206 [No Abstract] [Full Text] [Related]
10. The light-induced carotenoid absorbance changes in Rhodopseudomonas sphaeroides: an analysis and interpretation of the band shifts. Symons M; Swysen C; Sybesma C Biochim Biophys Acta; 1977 Dec; 462(3):706-17. PubMed ID: 304358 [TBL] [Abstract][Full Text] [Related]
11. Spectral identification of the electrochromically active carotenoids of Rhodobacter sphaeroides in chromatophores and reconstituted liposomes. Crielaard W; van Mourik F; van Grondelle R; Konings WN; Hellingwerf KJ Biochim Biophys Acta; 1992 Apr; 1100(1):9-14. PubMed ID: 1567885 [TBL] [Abstract][Full Text] [Related]
12. The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas spheroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling. Jackson JB; Dutton PL Biochim Biophys Acta; 1973 Oct; 325(1):102-13. PubMed ID: 4358810 [No Abstract] [Full Text] [Related]
13. Characterization of primary reactants in bacterial photosynthesis. I. Comparison of the light-induced EPR signal (g=2.0026) with that of a bacteriochlorophyll radical. McElroy JD; Feher G; Mauzerall DC Biochim Biophys Acta; 1972 May; 267(2):363-74. PubMed ID: 4339582 [No Abstract] [Full Text] [Related]
14. High-order fluorescence and exciton interaction in photosynthetic bacteria. Chu Kung M; DeVault D Biochim Biophys Acta; 1978 Feb; 501(2):217-31. PubMed ID: 304360 [TBL] [Abstract][Full Text] [Related]
15. Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas as sphaeroides R26. Davidson E; Cogdell RJ Biochim Biophys Acta; 1981 Apr; 635(2):295-303. PubMed ID: 6972228 [TBL] [Abstract][Full Text] [Related]
16. Response of 9-aminoacridine fluorescence to transmembrane pH-gradients in chromatophores from Rhodopseudomonas sphaeroides. Elema RP; Michels PA; Konings WN Eur J Biochem; 1978 Dec; 92(2):381-7. PubMed ID: 33044 [No Abstract] [Full Text] [Related]
17. Sidedness of membrane structures in Rhodopseudomonas sphaeroides. Electrochemical titration of the spectrum changes of carotenoid in spheroplasts, spheroplast membrane vesicles and chromatophores. Matsuura K; Nishimura M Biochim Biophys Acta; 1977 Mar; 459(3):483-91. PubMed ID: 300247 [TBL] [Abstract][Full Text] [Related]
18. The functional unit of electrical events and phosphorylation in chromatophores from Rhodopseudomonas sphaeroides. Saphon S; Jackson JB; Lerbs V; Witt HT Biochim Biophys Acta; 1975 Oct; 408(1):58-66. PubMed ID: 1080674 [TBL] [Abstract][Full Text] [Related]
19. Comparison of permeant ion uptake and carotenoid band shift as methods for determining the membrane potential in chromatophores from Rhodopseudomonas sphaeroides Ga. Ferguson SJ; Jones OT; Kell DB; Sorgato MC Biochem J; 1979 Apr; 180(1):75-85. PubMed ID: 226068 [TBL] [Abstract][Full Text] [Related]