These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanical activation in slow and twitch skeletal muscle fibres of the frog. Gilly WF; Hui CS J Physiol; 1980 Apr; 301():137-56. PubMed ID: 6967970 [TBL] [Abstract][Full Text] [Related]
5. Kinetic properties of calcium channels of twitch muscle fibres of the frog. Sánchez JA; Stefani E J Physiol; 1983 Apr; 337():1-17. PubMed ID: 6308234 [TBL] [Abstract][Full Text] [Related]
6. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. Chandler WK; Rakowski RF; Schneider MF J Physiol; 1976 Jan; 254(2):285-316. PubMed ID: 1082507 [TBL] [Abstract][Full Text] [Related]
7. An evaluation of the membrane constants and the potassium conductance in metabolically exhausted muscle fibres. Fink R; Lüttgau HC J Physiol; 1976 Dec; 263(2):215-38. PubMed ID: 1087932 [TBL] [Abstract][Full Text] [Related]
8. Inward calcium current in twitch muscle fibres of the frog. Sanchez JA; Stefani E J Physiol; 1978 Oct; 283():197-209. PubMed ID: 309941 [TBL] [Abstract][Full Text] [Related]
9. Calcium and potassium systems of a giant barnacle muscle fibre under membrane potential control. Keynes RD; Rojas E; Taylor RE; Vergara J J Physiol; 1973 Mar; 229(2):409-55. PubMed ID: 4724831 [TBL] [Abstract][Full Text] [Related]
10. Control of the delayed outward potassium currents in bursting pace-maker neurones of the snail, Helix pomatia. Heyer CB; Lux HD J Physiol; 1976 Nov; 262(2):349-82. PubMed ID: 994042 [TBL] [Abstract][Full Text] [Related]
11. The potassium current underlying delayed rectification in cat ventricular muscle. McDonald TF; Trautwein W J Physiol; 1978 Jan; 274():217-46. PubMed ID: 624994 [TBL] [Abstract][Full Text] [Related]
12. Ionic currents in slow twitch skeletal muscle in the rat. Duval A; Léoty C J Physiol; 1980 Oct; 307():23-41. PubMed ID: 7205665 [TBL] [Abstract][Full Text] [Related]
13. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. Brum G; Rios E J Physiol; 1987 Jun; 387():489-517. PubMed ID: 3116215 [TBL] [Abstract][Full Text] [Related]
14. Membrane charge movement in contracting and non-contracting skeletal muscle fibres. Horowicz P; Schneider MF J Physiol; 1981 May; 314():565-93. PubMed ID: 6975814 [TBL] [Abstract][Full Text] [Related]
15. The effects of rubidium ions on components of the potassium conductance in the frog node of Ranvier. Plant TD J Physiol; 1986 Jun; 375():81-105. PubMed ID: 2432229 [TBL] [Abstract][Full Text] [Related]
16. Calcium action potentials and calcium currents in tonic muscle fibres of the frog (Rana pipiens). Huerta M; Stefani E J Physiol; 1986 Mar; 372():293-301. PubMed ID: 2425085 [TBL] [Abstract][Full Text] [Related]
18. Calcium-channel gating in frog skeletal muscle membrane: effect of temperature. Cota G; Nicola Siri L; Stefani E J Physiol; 1983 May; 338():395-412. PubMed ID: 6308247 [TBL] [Abstract][Full Text] [Related]
19. The effect of zinc ions on the gating of the delayed potassium conductance of frog sartorius muscle. Stanfield PR J Physiol; 1975 Oct; 251(3):711-35. PubMed ID: 1081141 [TBL] [Abstract][Full Text] [Related]
20. Slow calcium and potassium currents across frog muscle membrane: measurements with a vaseline-gap technique. Almers W; Palade PT J Physiol; 1981 Mar; 312():159-76. PubMed ID: 6267261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]