These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 696872)

  • 1. Iodide and thiocyanate efflux from brain following injection into rat caudate nucleus.
    Cserr HF; Berman BJ
    Am J Physiol; 1978 Oct; 235(4):F331-7. PubMed ID: 696872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efflux of radiolabeled polyethylene glycols and albumin from rat brain.
    Cserr HF; Cooper DN; Suri PK; Patlak CS
    Am J Physiol; 1981 Apr; 240(4):F319-28. PubMed ID: 7223889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the CSF sink on thiocyanate concentration gradient in brain.
    Pollay M; Kaplan RJ
    Am J Physiol; 1970 Sep; 219(3):802-8. PubMed ID: 5450890
    [No Abstract]   [Full Text] [Related]  

  • 4. Role of transthyretin in the transport of thyroxine from the blood to the choroid plexus, the cerebrospinal fluid, and the brain.
    Chanoine JP; Alex S; Fang SL; Stone S; Leonard JL; Körhle J; Braverman LE
    Endocrinology; 1992 Feb; 130(2):933-8. PubMed ID: 1733735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A radiotracer method to study efflux transport of iodide liberated from thyroid hormones via deiodination metabolism in the brain.
    Okamura T; Igarashi J; Kikuchi T; Fukushi K; Arano Y; Irie T
    Life Sci; 2009 Jun; 84(23-24):791-5. PubMed ID: 19303026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturable efflux of the peptides RC-160 and Tyr-MIF-1 by different parts of the blood-brain barrier.
    Banks WA; Kastin AJ; Sam HM; Cao VT; King B; Maness LM; Schally AV
    Brain Res Bull; 1994; 35(2):179-82. PubMed ID: 7953775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodide transport in primary cultured thyroid follicle cells: evidence of a TSH-regulated channel mediating iodide efflux selectively across the apical domain of the plasma membrane.
    Nilsson M; Björkman U; Ekholm R; Ericson LE
    Eur J Cell Biol; 1990 Aug; 52(2):270-81. PubMed ID: 1706997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [On the autoradiographic localization of active concentration of radioiodine in the guinea pig trachea with remarks on 35SCN, 36 Cl and 58Co].
    Kleine TO
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1967; 257(2):172-92. PubMed ID: 4232724
    [No Abstract]   [Full Text] [Related]  

  • 9. Clearance of [125I]-tumor necrosis factor-alpha from the brain into the blood after intracerebroventricular injection in rats.
    Chen G; Reichlin S
    Neuroimmunomodulation; 1998; 5(5):261-9. PubMed ID: 9730694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate and iodide concentration in bain. The influence of cerebrospinal fluid.
    Cutler RW; Lorenzo AV; Barlow CF
    Arch Neurol; 1968 Mar; 18(3):316-23. PubMed ID: 5642757
    [No Abstract]   [Full Text] [Related]  

  • 11. Cerebrospinal fluid transport and the thiocyanate space of the brain.
    Pollay M
    Am J Physiol; 1966 Feb; 210(2):275-9. PubMed ID: 5901464
    [No Abstract]   [Full Text] [Related]  

  • 12. Insulin-like growth factors cross the blood-brain barrier.
    Reinhardt RR; Bondy CA
    Endocrinology; 1994 Nov; 135(5):1753-61. PubMed ID: 7525251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.
    Thorne RG; Pronk GJ; Padmanabhan V; Frey WH
    Neuroscience; 2004; 127(2):481-96. PubMed ID: 15262337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Film autoradiography identifies unique features of [125I]3,3'5'-(reverse) triiodothyronine transport from blood to brain.
    Cheng LY; Outterbridge LV; Covatta ND; Martens DA; Gordon JT; Dratman MB
    J Neurophysiol; 1994 Jul; 72(1):380-91. PubMed ID: 7965021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transependymal transport of thiocyanate.
    Pollay M; Kaplan R
    J Neurobiol; 1972; 3(4):339-46. PubMed ID: 5087160
    [No Abstract]   [Full Text] [Related]  

  • 16. Relative potencies and additivity of perchlorate, thiocyanate, nitrate, and iodide on the inhibition of radioactive iodide uptake by the human sodium iodide symporter.
    Tonacchera M; Pinchera A; Dimida A; Ferrarini E; Agretti P; Vitti P; Santini F; Crump K; Gibbs J
    Thyroid; 2004 Dec; 14(12):1012-9. PubMed ID: 15650353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration of radio-iodide and 35S-labelled thiocyanate by the stomach of the hamster.
    LOGOTHETOPOULOS JH; MYANT NB
    J Physiol; 1956 Jul; 133(1):213-9. PubMed ID: 13346647
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic analysis of 3-quinuclidinyl 4-[125I]iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo: implications for human studies.
    Sawada Y; Hiraga S; Francis B; Patlak C; Pettigrew K; Ito K; Owens E; Gibson R; Reba R; Eckelman W
    J Cereb Blood Flow Metab; 1990 Nov; 10(6):781-807. PubMed ID: 2134838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration of radio-iodide and 35-S-thiocyanate by the salivary glands.
    LOGOTHETOPOULOS JH; MYANT NB
    J Physiol; 1956 Oct; 134(1):189-94. PubMed ID: 13377321
    [No Abstract]   [Full Text] [Related]  

  • 20. [Studies on the relationship between 2-iminothiazolidine-4-carboxylic acid and the thiocyanate metabolism in the guinea-pig (author's transl)].
    Weuffen W; Jess G; Jülich WD; Bernhardt D
    Pharmazie; 1980; 35(4):221-3. PubMed ID: 7403244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.