These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6968916)
1. Underestimation of Na permeability in muscle cells: implications for the theory of cell potential and for energy requirement of the Na pump. Ling GN Physiol Chem Phys; 1980; 12(3):215-32. PubMed ID: 6968916 [TBL] [Abstract][Full Text] [Related]
2. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis. Ling GN Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous efflux of K+ and Na+ from frog sartorius muscle freed of extracellular fluids: evidence for rapidly exchanging Na+ from the cells. Ling GN; Walton CL Physiol Chem Phys; 1975; 7(6):501-15. PubMed ID: 1083537 [TBL] [Abstract][Full Text] [Related]
5. Indifference of the resting potential of frog muscle cells to external Mg++ in the face of high Mg++ permeability. Ling GN; Walton CL; Ochsenfeld MM Physiol Chem Phys Med NMR; 1983; 15(5):379-90. PubMed ID: 6609379 [TBL] [Abstract][Full Text] [Related]
6. Extracellular space of frog skeletal muscle in vivo and in vitro: relation to proton magnetic resonance relaxation times. Neville MC; White S J Physiol; 1979 Mar; 288():71-83. PubMed ID: 313983 [TBL] [Abstract][Full Text] [Related]
7. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+? Ling GN; Ochsenfeld MM Physiol Chem Phys; 1976; 8(5):389-95. PubMed ID: 1088477 [TBL] [Abstract][Full Text] [Related]
8. A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles. Ling GN; Walton CL; Ochsenfeld MM J Cell Physiol; 1981 Mar; 106(3):385-98. PubMed ID: 6971295 [TBL] [Abstract][Full Text] [Related]
9. Studies on ion permeability: IV. The mechanism of ouabain action on the Na+-ion efflux in frog muscles. Ling GN; Palmer LG Physiol Chem Phys; 1972; 4(6):517-25. PubMed ID: 4549328 [No Abstract] [Full Text] [Related]
10. The sodium-potassium exchange pump. II. Analysis of Na + -loaded frog sartorius muscle. Rapoport SI Biophys J; 1971 Aug; 11(8):631-47. PubMed ID: 5116580 [TBL] [Abstract][Full Text] [Related]
11. [Neurotrophic control of the resting membrane potential of phasic muscle fibers in frogs]. Volkov EM; Poletaev GI Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1807-13. PubMed ID: 7037469 [TBL] [Abstract][Full Text] [Related]
12. Multiple fractions of sodium exchange in human lymphocytes. Negendank W; Shaller C J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615 [TBL] [Abstract][Full Text] [Related]
13. Cooperative interaction among cell surface sites: evidence in support of the surface adsorption theory of cellular electrical potentials. Ling GN; Fisher A Physiol Chem Phys Med NMR; 1983; 15(5):369-78. PubMed ID: 6609378 [TBL] [Abstract][Full Text] [Related]
14. [The effect of NaK2Cl symport and chloride channel permeability on ion flux balance and on transmembrane ion distribution in different types of animal cells]. Vereninov AA; Glushankova LN; Rubashkin AA Tsitologiia; 1997; 39(8):727-39. PubMed ID: 9490512 [TBL] [Abstract][Full Text] [Related]
15. Experimental verification of an expected relation between time of incubation and magnitude of the fast and slow fractions of the sodium efflux from amphibian eggs. Ling GN; Ochsenfeld MM Physiol Chem Phys; 1977; 9(4-5):427-31. PubMed ID: 306631 [TBL] [Abstract][Full Text] [Related]
16. [Cell membrane transport of magnesium]. Konishi M Clin Calcium; 2005 Feb; 15(2):233-8. PubMed ID: 15692162 [TBL] [Abstract][Full Text] [Related]
17. Succinylcholine-induced hyperkalemia: effects of succinylcholine on resting potentials and electrolyte distributions in normal and denervated muscle. Kendig JJ; Bunker JP; Endow S Anesthesiology; 1972 Feb; 36(2):132-7. PubMed ID: 5059102 [No Abstract] [Full Text] [Related]
18. Membrane potential and active transport--an information theory approach. Wang YY; Wang WK Physiol Chem Phys; 1979; 11(1):77-82. PubMed ID: 504365 [TBL] [Abstract][Full Text] [Related]
19. [Membrane potential, permeability coefficients and the ratio of the influx/efflux rates for alkaline cations across the muscle fiber membrane of the frog in a bi-ionic system]. Vereninov AA; Toropova FV Tsitologiia; 1983 Mar; 25(3):297-305. PubMed ID: 6304955 [TBL] [Abstract][Full Text] [Related]
20. Investigations on the control of ion transport in human erythrocytes. II. Influence of transmembrane potential, exterior surface potential and intracellular pH on the 22Na efflux. Bernhardt I; Glaser R Acta Biol Med Ger; 1982; 41(6):541-7. PubMed ID: 7148265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]