These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 6969304)

  • 21. Active ion transport in the renal proximal tubule. I. Transport and metabolic studies.
    Soltoff SP; Mandel LJ
    J Gen Physiol; 1984 Oct; 84(4):601-22. PubMed ID: 6502133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretransplantation assessment of renal viability with NADH fluorimetry.
    Coremans JM; Van Aken M; Naus DC; Van Velthuysen ML; Bruining HA; Puppels GJ
    Kidney Int; 2000 Feb; 57(2):671-83. PubMed ID: 10652046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation of Na+ reabsorption to utilization of O2 and lactate in the perfused rat kidney.
    Cohen JJ; Merkens LS; Peterson OW
    Am J Physiol; 1980 May; 238(5):F415-27. PubMed ID: 7377350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial redox state as a potential detector of liver dysoxia in vivo.
    Dishart MK; Schlichtig R; Tonnessen TI; Rozenfeld RA; Simplaceanu E; Williams D; Gayowski TJ
    J Appl Physiol (1985); 1998 Mar; 84(3):791-7. PubMed ID: 9480934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between HCO3- transport and oxidative metabolism in rabbit proximal tubule.
    Dickman KG; Mandel LJ
    Am J Physiol; 1992 Aug; 263(2 Pt 2):F342-51. PubMed ID: 1510126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. α-Tocopherol administration blocks adaptive changes in cell NADH/NAD+ redox state and mitochondrial function leading to inhibition of gastric mucosa cell proliferation in rats.
    Olguín-Martínez M; Hernández-Espinosa DR; Hernández-Muñoz R
    Free Radic Biol Med; 2013 Dec; 65():1090-1100. PubMed ID: 23994576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy metabolism of renal cell lines, A6 and MDCK: regulation by Na-K-ATPase.
    Lynch RM; Balaban RS
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C225-31. PubMed ID: 3030121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues.
    Mandel LJ; Balaban RS
    Am J Physiol; 1981 May; 240(5):F357-71. PubMed ID: 7015879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells.
    Nowak G; Bakajsova D; Clifton GL
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F307-16. PubMed ID: 14570699
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study.
    Balaban RS; Mandel LJ
    Am J Physiol; 1988 Mar; 254(3 Pt 2):F407-16. PubMed ID: 3348418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss of NAD(H) from swollen yeast mitochondria.
    Bradshaw PC; Pfeiffer DR
    BMC Biochem; 2006 Jan; 7():3. PubMed ID: 16433924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis.
    Quinlan PT; Halestrap AP
    Biochem J; 1986 Jun; 236(3):789-800. PubMed ID: 3024626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nephron pO2 and renal oxygen usage in the hypertensive rat kidney.
    Welch WJ; Baumgärtl H; Lübbers D; Wilcox CS
    Kidney Int; 2001 Jan; 59(1):230-7. PubMed ID: 11135075
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation.
    Mandel LJ
    Kidney Int; 1986 Jan; 29(1):3-9. PubMed ID: 3007851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NADH fluorescence of isolated ventricular myocytes: effects of pacing, myoglobin, and oxygen supply.
    White RL; Wittenberg BA
    Biophys J; 1993 Jul; 65(1):196-204. PubMed ID: 8369428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bay K 8644, modifier of calcium transport and energy metabolism in rat heart mitochondria: a new intracellular site of action.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Br J Pharmacol; 1990 Sep; 101(1):15-20. PubMed ID: 1704271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of oxygen tension on cellular energetics.
    Wilson DF; Erecińska M; Drown C; Silver IA
    Am J Physiol; 1977 Nov; 233(5):C135-40. PubMed ID: 200145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.