These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 69707)

  • 21. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle.
    Anderson MJ; Cohen MW
    J Physiol; 1974 Mar; 237(2):385-400. PubMed ID: 4133039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clusters of intramembrane particles associated with binding sites for alpha-bungarotoxin in cultured chick myotubes.
    Cohen SA; Pumplin DW
    J Cell Biol; 1979 Aug; 82(2):494-516. PubMed ID: 479313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution and quantification of ACh receptors and innervation in diaphragm muscle of normal and mdg mouse embryos.
    Powell JA; Rieger F; Blondet B; Dreyfus P; Pinçon-Raymond M
    Dev Biol; 1984 Jan; 101(1):168-80. PubMed ID: 6692971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. alpha-bungarotoxin binding sites (acetylcholine receptors) in denervated mammalian sarcolemma.
    Tipnis UR; Malhotra SK
    J Supramol Struct; 1979; 12(3):321-34. PubMed ID: 547118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localization of acetylcholine receptors by means of horseradish peroxidase-alpha-bungarotoxin during formation and development of the neuromuscular junction in the chick embryo.
    Jacob M; Lentz TL
    J Cell Biol; 1979 Jul; 82(1):195-211. PubMed ID: 479297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve.
    Peng HB
    J Neurosci; 1986 Feb; 6(2):581-9. PubMed ID: 3950711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an amphibian neuromuscular junction in vivo and in culture.
    Cohen MW
    J Exp Biol; 1980 Dec; 89():43-56. PubMed ID: 7009778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture.
    Berg DK; Hall ZW
    J Physiol; 1975 Nov; 252(3):771-89. PubMed ID: 1206575
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A correlation of the alpha-bungarotoxin binding sites (acetylcholine receptors) and intramembranous particles in denervated skeletal muscle of rat.
    Tipnis UR; Malhotra SK
    Cytobios; 1981; 31(122):91-106. PubMed ID: 7318510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of calcitonin gene-related peptide (CGRP) immunoreactivity in relationship to the formation of neuromuscular junctions in Xenopus myotomal muscle.
    Peng HB; Chen QM; de Biasi S; Zhu DL
    J Comp Neurol; 1989 Dec; 290(4):533-43. PubMed ID: 2613943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo.
    Bevan S; Steinbach JH
    J Physiol; 1977 May; 267(1):195-213. PubMed ID: 874836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of sodium and potassium currents at sites of nerve-muscle contact in embryonic Xenopus muscle cells in culture.
    Fry M; Moody-Corbett F
    Pflugers Arch; 1999 May; 437(6):895-902. PubMed ID: 10370068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nerve extract induces increase and redistribution of acetylcholine receptors on cloned muscle cells.
    Podleski TR; Axelrod D; Ravdin P; Greenberg I; Johnson MM; Salpeter MM
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):2035-9. PubMed ID: 273928
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Membrane particle aggregates in innervated and noninnervated cultures of Xenopus embryonic muscle cells.
    Peng HB; Nakajima Y
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):500-4. PubMed ID: 272667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve.
    Burden SJ; Sargent PB; McMahan UJ
    J Cell Biol; 1979 Aug; 82(2):412-25. PubMed ID: 479308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early cross-striation formation in twitching Xenopus myocytes in culture.
    Kidokoro Y; Saito M
    Proc Natl Acad Sci U S A; 1988 Mar; 85(6):1978-82. PubMed ID: 3279423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of acetylcholine receptors on embryonic amphibian muscle.
    Brehm P; Yeh E; Patrick J; Kidokoro Y
    J Neurosci; 1983 Jan; 3(1):101-7. PubMed ID: 6822849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of di-iodinated 125I-labelled alpha-bungarotoxin and reversible cholinergic ligands with intact synaptic acetylcholine receptors on isolated skeletal-muscle fibres from the rat.
    Darveniza P; Morgan-Hughes JA; Thompson EJ
    Biochem J; 1979 Sep; 181(3):545-57. PubMed ID: 518540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Initial synaptic transmission at the growth cone in Xenopus nerve-muscle cultures.
    Kidokoro Y; Yeh E
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6727-31. PubMed ID: 6292914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Congruity of acetylcholine receptor, acetylcholinesterase, and Dolichos biflorus lectin binding glycoprotein in postsynaptic-like sarcolemmal specializations in noninnervated regenerating rat muscles.
    Crne-Finderle N; Sketelj J
    J Neurosci Res; 1993 Jan; 34(1):67-78. PubMed ID: 8423637
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.