BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 6971295)

  • 1. A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles.
    Ling GN; Walton CL; Ochsenfeld MM
    J Cell Physiol; 1981 Mar; 106(3):385-98. PubMed ID: 6971295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confirmation of "universality rule" in solute distributions: studies of simultaneous efflux of Na+ and D-arabinose from single frog eggs living, dying, and dead.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1977; 9(4-5):405-26. PubMed ID: 306630
    [No Abstract]   [Full Text] [Related]  

  • 3. How does reduced external K+ concentration affect the rate of Na+ efflux? Evidence against the K-Na coupled pump but in support of the association-induction hypothesis.
    Ling GN
    Physiol Chem Phys; 1978; 10(4):353-65. PubMed ID: 311014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous efflux of K+ and Na+ from frog sartorius muscle freed of extracellular fluids: evidence for rapidly exchanging Na+ from the cells.
    Ling GN; Walton CL
    Physiol Chem Phys; 1975; 7(6):501-15. PubMed ID: 1083537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple fractions of sodium exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Sep; 104(3):443-59. PubMed ID: 7419615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underestimation of Na permeability in muscle cells: implications for the theory of cell potential and for energy requirement of the Na pump.
    Ling GN
    Physiol Chem Phys; 1980; 12(3):215-32. PubMed ID: 6968916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell volumes and water contents of frog muscles in solutions of permeant sugars and sugar alcohols.
    Ling GN
    Physiol Chem Phys Med NMR; 1987; 19(3):159-75. PubMed ID: 3502025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na+ and K+ levels in living cells: do they depend on the rate of outward transport of Na+?
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1976; 8(5):389-95. PubMed ID: 1088477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictions of polarized multilayer theory of solute distribution confirmed from a study of the equilibrium distribution in frog muscle of twenty-one nonelectrolytes including five cryoprotectants.
    Ling GN; Niu Z; Ochsenfeld M
    Physiol Chem Phys Med NMR; 1993; 25(3):177-208. PubMed ID: 8115493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental verification of an expected relation between time of incubation and magnitude of the fast and slow fractions of the sodium efflux from amphibian eggs.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys; 1977; 9(4-5):427-31. PubMed ID: 306631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Na,K pumps in restoring contractility following loss of cell membrane integrity in rat skeletal muscle.
    Clausen T; Gissel H
    Acta Physiol Scand; 2005 Mar; 183(3):263-71. PubMed ID: 15743386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic investigation of K+ efflux during glycerol treatment of muscle.
    Hummel Z
    Physiol Chem Phys Med NMR; 1986; 18(3):207-12. PubMed ID: 3495810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The distribution of sugars between the frog's sartorius muscle and the medium of different ionic composition in normal state, and under insulin action].
    Chukhlova EA
    Tsitologiia; 1968 Oct; 10(10):1306-12. PubMed ID: 5733948
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the physical state of water in living cells and model systems. XI. The equilibrium distribution coefficients of pentoses in muscle cell water: their dependence primarily on the molecular weights of the pentoses and lesser dependence on their stereospecificity.
    Ling GN; Ochsenfeld MM
    Physiol Chem Phys Med NMR; 1988; 20(4):309-17. PubMed ID: 3254540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical temperature transition of K+-Na+ exchange in human lymphocytes.
    Negendank W; Shaller C
    J Cell Physiol; 1980 Apr; 103(1):87-95. PubMed ID: 7430260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physical theory of the living state: application to water and solute distribution.
    Ling GN
    Scanning Microsc; 1988 Jun; 2(2):899-913. PubMed ID: 3399856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on the physical state of water in living cells and model systems: IX. Theoretical significance of a straight line relationship between intracellular concentration of a partially excluded solute and its concentration in the bathing medium.
    Ling GN
    Physiol Chem Phys Med NMR; 1988; 20(4):281-92. PubMed ID: 3076014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the physical state of water in living cells and model systems. X. The dependence of the equilibrium distribution coefficient of a solute in polarized water on the molecular weights of the solute: experimental confirmation of the "size rule" in model studies.
    Ling GN; Hu W
    Physiol Chem Phys Med NMR; 1988; 20(4):293-307. PubMed ID: 3254539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of metabolic inhibitors on sugar transport in the frog's gastrocnemius muscle].
    Doroshenko NV
    Tsitologiia; 1968 May; 10(5):588-92. PubMed ID: 5709320
    [No Abstract]   [Full Text] [Related]  

  • 20. Na-K-Cl cotransport in normal and glaucomatous human trabecular meshwork cells.
    Putney LK; Brandt JD; O'Donnell ME
    Invest Ophthalmol Vis Sci; 1999 Feb; 40(2):425-34. PubMed ID: 9950602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.