These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 6971913)

  • 1. Absorption of protein molecules by the small intestine of the bullfrog tadpole, Rana catesbeiana.
    Sugimoto K; Ichikawa Y; Nakamura I
    J Exp Zool; 1981 Jan; 215(1):53-62. PubMed ID: 6971913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular absorption by histologically normal and abnormal small intestinal mucosa in childhood: an in vitro study using organ culture.
    Jackson D; Walker-Smith JA; Phillips AD
    J Pediatr Gastroenterol Nutr; 1983 May; 2(2):235-47. PubMed ID: 6875748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of villus absorptive cells in the human fetal small intestine: a morphological and morphometric study.
    Moxey PC; Trier JS
    Anat Rec; 1979 Nov; 195(3):463-82. PubMed ID: 507402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peroxidase activity in the epithelium of the digestive tract of the bullfrog, Rana catesbeiana.
    Sugimoto K; Ichikawa Y; Nakamura I
    J Exp Zool; 1985 Feb; 233(2):209-19. PubMed ID: 2982995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Vesicular peroxidase transport by the epithelial cells of the small intestine in the adult rat].
    Lysikov IuA; Sokolova MV; Morozov IA
    Biull Eksp Biol Med; 1983 Apr; 95(4):114-8. PubMed ID: 6831004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous peroxidase activity in brush cell-like cells in the large intestine of the bullfrog tadpole, Rana catesbeiana.
    Sugimoto K; Ichikawa Y; Nakamura I
    Cell Tissue Res; 1983; 230(2):451-61. PubMed ID: 6601990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colchicine-induced tubular, vesicular and cisternal organelle aggregates in absorptive cells of the small intestine of the rat. II.--Endocytosis studies.
    Ellinger A; Pavelka M
    Biol Cell; 1986; 58(1):31-41. PubMed ID: 3032316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absorption of horseradish peroxidase by the small intestinal epithelium in postnatal developing rats.
    Ono K
    Z Mikrosk Anat Forsch; 1975; 89(5):870-83. PubMed ID: 1234392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The trophotaenial placenta of a viviparous goodeid fish. III: Protein uptake by trophotaeniae, the embryonic component.
    Lombardi J; Wourms JP
    J Exp Zool; 1985 Nov; 236(2):165-79. PubMed ID: 4067530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivesicular bodies in HEp-2 cells are maturing endosomes.
    van Deurs B; Holm PK; Kayser L; Sandvig K; Hansen SH
    Eur J Cell Biol; 1993 Aug; 61(2):208-24. PubMed ID: 8223712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum.
    Gonnella PA; Neutra MR
    J Cell Biol; 1984 Sep; 99(3):909-17. PubMed ID: 6470044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocytosis by absorptive cells in the middle segment of the suckling rat small intestine.
    Baba R; Fujita M; Tein CE; Miyoshi M
    Anat Sci Int; 2002 Jun; 77(2):117-23. PubMed ID: 12418091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Daily variations in the effects of disturbance on growth, fattening, and metamorphosis in the bullfrog (Rana catesbeiana) tadpole.
    Horseman ND; Meier AH; Culley DD
    J Exp Zool; 1976 Dec; 198(3):353-8. PubMed ID: 1087331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in rat jejunal permeability to a macromolecular tracer during a hyperosmotic load.
    Cooper M; Teichberg S; Lifshitz F
    Lab Invest; 1978 Apr; 38(4):447-54. PubMed ID: 642452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lenten cell: ultrastructure, absorptive properties, and enzyme expression of a novel type of cell in the newborn and suckling pig intestinal epithelium.
    Heath JP; Kömüves LG; Nichols BL
    Anat Rec; 1996 Jan; 244(1):95-104. PubMed ID: 8838427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocytosis in absorptive cells of cultured human small-intestinal tissue: horseradish peroxidase, lactoperoxidase, and ferritin as markers.
    Blok J; Mulder-Stapel AA; Ginsel LA; Daems WT
    Cell Tissue Res; 1981; 216(1):1-13. PubMed ID: 7226201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of horseradish peroxidase by neonatal pig intestinal epithelium: effect of Escherichia coli (055B5) on absorption.
    Staley TE
    Am J Vet Res; 1977 Sep; 38(9):1307-14. PubMed ID: 335926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of motoneuron projection patterns during development of the bullfrog tadpole (Rana catesbeiana).
    Farel PB; Bemelmans SE
    J Comp Neurol; 1985 Aug; 238(1):128-34. PubMed ID: 3876358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal-embryonic relationships in the goodeid teleost, Xenoophorus captivus. The vacuolar apparatus in trophotaenial absorptive cells and its role in macromolecular transport.
    Schindler JF; de Vries U
    Cell Tissue Res; 1988 Jul; 253(1):115-28. PubMed ID: 3416334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural features of the apical and tubulovesicular membranes of rodent small intestinal tuft cells.
    Trier JS; Allan CH; Marcial MA; Madara JL
    Anat Rec; 1987 Sep; 219(1):69-77. PubMed ID: 3688463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.