BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 6971914)

  • 1. Erythrocyte metabolism: kinetic and electrophoretic analyses of pig red cell hexokinase.
    Dixon E; Wilson BA
    J Exp Zool; 1981 Jan; 215(1):63-76. PubMed ID: 6971914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pig red blood cell hexokinase: regulatory characteristics and possible physiological role.
    Magnani M; Stocchi V; Serafini N; Piatti E; Dachà M; Fornaini G
    Arch Biochem Biophys; 1983 Oct; 226(1):377-87. PubMed ID: 6605723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Importance of binding of 2,3-diphosphoglycerate and ATP to hemoglobin for erythrocyte glycolysis: activation by 2,3-diphosphoglycerate of hexokinase at intracellular conditions].
    Geier T; Glende M; Reich JG
    Acta Biol Med Ger; 1978; 37(1):59-72. PubMed ID: 706929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of pig mature erythrocyte hexokinase.
    Kearse FJ; Dixon E
    Am J Physiol; 1985 Dec; 249(6 Pt 2):R740-6. PubMed ID: 4073295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic studies on the erythrocyte hexokinase of the domestic pig, Sus scrofa.
    Dixon E
    Comp Biochem Physiol B; 1975 Jan; 50(1):61-4. PubMed ID: 1122722
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulatory properties of human erythrocyte hexokinase during cell ageing.
    Fornaini G; Magnani M; Fazi A; Accorsi A; Stocchi V; Dachà M
    Arch Biochem Biophys; 1985 Jun; 239(2):352-8. PubMed ID: 3873907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of mammalian hexokinases: characterization of the rat type III isozyme and its chimeric forms, constructed with the N- and C-terminal halves of the type I and type II isozymes.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1997 Feb; 338(2):183-92. PubMed ID: 9028870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rabbit red blood cell hexokinase. Mechanism of decay during cell life-span.
    Magnani M; Stocchi V; Dacha M; Fornaini G
    Biomed Biochim Acta; 1983; 42(11-12):S311-6. PubMed ID: 6675710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic characterization and subcellular distribution of hexokinase isoenzymes in red blood cells of rabbits.
    Gellerich FN; Augustin HW
    Acta Biol Med Ger; 1979; 38(8):1091-9. PubMed ID: 532487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular distribution of organic phosphates in the rabbit erythrocyte and action on rabbit erythrocyte hexokinase.
    Magnani M; Stocchi V; Condò SG; Bertollini A; Antonini E
    Ital J Biochem; 1982; 31(6):419-27. PubMed ID: 7184906
    [No Abstract]   [Full Text] [Related]  

  • 12. Action of orthophosphate on rabbit red blood cell hexokinase.
    Magnani M; Stocchi V; Dachà M; Fornaini G
    Ital J Biochem; 1981; 30(3):217-28. PubMed ID: 6974156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Red cell system and selected red cell enzymes in men occupationally exposed to mercury vapours].
    Zabiński Z; Rutowski J; Moszczyński P; Dabrowski Z
    Przegl Lek; 2006; 63 Suppl 7():74-83. PubMed ID: 17784549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pig red blood cell hexokinase: evidence for the presence of hexokinase types II and III, and their purification and characterization.
    Stocchi V; Magnani M; Novelli G; Dachà M; Fornaini G
    Arch Biochem Biophys; 1983 Oct; 226(1):365-76. PubMed ID: 6639059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mannose metabolism in the human erythrocyte.
    Beutler E; Teeple L
    J Clin Invest; 1969 Mar; 48(3):461-6. PubMed ID: 5773084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of human erythrocyte hexokinase. The influence of glycolytic intermediates and inorganic phosphate.
    Rijksen G; Staal GE
    Biochim Biophys Acta; 1977 Nov; 485(1):75-86. PubMed ID: 911866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved stability of 2,3-bisphosphoglycerate during storage of hexokinase-overloaded erythrocytes.
    Magnani M; Rossi L; Bianchi M; Serafini G; Zocchi E; Laguerre M; Ropars C
    Biotechnol Appl Biochem; 1989 Oct; 11(5):439-44. PubMed ID: 2803567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte pyruvate kinase deficiency. The influence of physiologically important metabolites on the function of normal and defective enzymes.
    Lakomek M; Winkler H; Pekrun A; Krüger N; Sander M; Huppke P; Schröter W
    Enzyme Protein; 1994-1995; 48(3):149-63. PubMed ID: 8589802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues putatively involved in binding of ATP and glucose 6-phosphate to a mammalian hexokinase: site-directed mutation at analogous positions in the N- and C-terminal halves of the type I isozyme.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1995 Aug; 321(2):413-20. PubMed ID: 7646067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.