These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 6972173)

  • 1. Inhibition of tetanus tension by elevated extracellular calcium concentration.
    Howell JN; Snowdowne KW
    Am J Physiol; 1981 May; 240(5):C193-200. PubMed ID: 6972173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for t-tubular conduction failure in frog skeletal muscle induced by elevated extracellular calcium concentration.
    Howell JN; Shankar A; Howell SG; Wei F
    J Muscle Res Cell Motil; 1987 Jun; 8(3):229-41. PubMed ID: 3497173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrease in the size of tetanic responses produced by nitrendipine or by extracellular calcium ion removal without blocking twitches or action potentials in skeletal muscle.
    Oz M; Frank GB
    J Pharmacol Exp Ther; 1991 May; 257(2):575-81. PubMed ID: 1903444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-dependent effect of ethanol on action potentials of frog skeletal muscle fibers.
    Oz M; Frank GB
    Methods Find Exp Clin Pharmacol; 1995 Jun; 17(5):295-8. PubMed ID: 8830196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glycerol treatment on the calcium current of frog skeletal muscle.
    Siri LN; Sánchez JA; Stefani E
    J Physiol; 1980 Aug; 305():87-96. PubMed ID: 6969308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of force production in compressed skinned muscle fibers of the frog.
    Maughan DW; Godt RE
    Pflugers Arch; 1981 May; 390(2):161-3. PubMed ID: 6972521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle.
    Cairns SP; Hing WA; Slack JR; Mills RG; Loiselle DS
    J Appl Physiol (1985); 1998 Apr; 84(4):1395-406. PubMed ID: 9516209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of 4-aminopyridine on the excitation-contraction coupling in frog and rat skeletal muscle.
    Khan AR; Edman KA
    Acta Physiol Scand; 1979 Apr; 105(4):443-52. PubMed ID: 313138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature and Zn2+ on isometric contractile properties and electrical phenomena of frog (Rana) and Xenopus skeletal muscle fibers.
    Oba T; Takagi Y; Hotta K
    Can J Physiol Pharmacol; 1984 Dec; 62(12):1511-7. PubMed ID: 6335672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers.
    Barrett N; Barrett EF
    Science; 1978 Jun; 200(4347):1270-2. PubMed ID: 96524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of action of pentobarbital on the contractile system of isolated frog muscle fibres.
    Khan AR
    Acta Physiol Scand; 1980 Apr; 108(4):405-9. PubMed ID: 6968148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacology of the alkaloid pumiliotoxin-B. II. Possible involvement of calcium and sodium-dependent processes in nerve and skeletal muscle.
    Rao KS; Warnick JE; Daly JW; Albuquerque EX
    J Pharmacol Exp Ther; 1987 Nov; 243(2):775-83. PubMed ID: 3500302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of activation of contraction in frog ventricular muscle.
    Anderson TW; Hirsch C; Kavaler F
    Circ Res; 1977 Oct; 41(4):472-80. PubMed ID: 302765
    [No Abstract]   [Full Text] [Related]  

  • 15. [The role of extracellular calcium in regulating the contraction of the developing musculature in the frog Rana temporaria].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1996; 32(3):284-91. PubMed ID: 9148615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetanus responses under rapid bath solution change: electrotonic depolarization of transverse tubules may release Ca2+ from sarcoplasmic reticulum of Rana japonica skeletal muscle.
    Fujishiro N; Kawata H
    Comp Biochem Physiol Comp Physiol; 1992 Dec; 103(4):661-6. PubMed ID: 1361893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular Ca2+ and excitation-contraction coupling.
    Spiecker W; Melzer W; Lüttgau HC
    Nature; 1979 Jul; 280(5718):158-60. PubMed ID: 121894
    [No Abstract]   [Full Text] [Related]  

  • 18. Fatigue and posttetanic potentiation in single muscle fibers of the frog.
    Vergara JL; Rapoprot SI; Nassar-Gentina V
    Am J Physiol; 1977 May; 232(5):C185-90. PubMed ID: 300990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of sodium or calcium in electrical depolarization of feline colonic smooth muscle.
    Snape WJ; Tan ST
    Am J Physiol; 1985 Jul; 249(1 Pt 1):G66-72. PubMed ID: 3925793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of calcium channel modulators on contractions of tonic frog muscle fibres.
    Kössler F; Nasledov GA; Shvinka N
    Gen Physiol Biophys; 1996 Feb; 15(1):37-50. PubMed ID: 8902556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.