These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

730 related articles for article (PubMed ID: 6972945)

  • 1. Factors in the rat submaxillary gland that stimulate growth of cultured glioma cells: identification and partial characterization.
    McClure DB; Ohasa S; Sato GH
    J Cell Physiol; 1981 May; 107(2):195-207. PubMed ID: 6972945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth-promoting actions of extracts from mouse submaxillary glands on human endothelial cells in culture.
    Johnson AR; Boyden NT; Wilson CM
    J Cell Physiol; 1979 Dec; 101(3):431-8. PubMed ID: 231038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth-promoting activity in serum-free medium of kallikreinlike arginylesteropeptidases from rat submaxillary gland.
    Catalioto RM; Négrel R; Gaillard D; Ailhaud G
    J Cell Physiol; 1987 Mar; 130(3):352-60. PubMed ID: 3644823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potent new mesodermal growth factor from mouse submaxillary gland. A quantitative, comparative study with previously described submaxillary gland growth factors.
    Weimar VL; Haraguchi KH
    Physiol Chem Phys; 1975; 7(1):7-21. PubMed ID: 1129379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and partial purification of keratinocyte growth factor from the hypothalamus.
    Gilchrest BA; Marshall WL; Karassik RL; Weinstein R; Maciag T
    J Cell Physiol; 1984 Sep; 120(3):377-83. PubMed ID: 6205002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a 15,000-molecular-weight form of immunoreactive transforming growth factor alpha in extracts of porcine pituitary.
    Riss TL; Sirbasku DA
    J Cell Physiol; 1989 Feb; 138(2):393-404. PubMed ID: 2918041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of rous sarcoma virus transformation of rat-1 fibroblasts upon their growth factor and anchorage requirements in serum-free medium.
    Giguère L; Gospodarowicz D
    Cancer Res; 1983 May; 43(5):2121-30. PubMed ID: 6299541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of C6-10A glioma cells highly responsive to beta-adrenergic receptor agonist-induced NGF synthesis/secretion.
    Fukumoto H; Kakihana M; Suno M
    Glia; 1994 Oct; 12(2):151-60. PubMed ID: 7532621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nerve growth factor producing cells on anaplastic glioma and pheochromocytoma clones: involvement of other factors.
    Vinores SA; Koestner A
    J Neurosci Res; 1981; 6(3):389-401. PubMed ID: 7299847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically and virally transformed cells able to grow without anchorage in serum-free medium: evidence for an autocrine growth factor.
    Xin LW; Jullien P; Lawrence DA; Pironin M; Vigier P
    J Cell Physiol; 1987 May; 131(2):175-83. PubMed ID: 3034920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcoma growth factor (SGF): specific binding to epidermal growth factor (EGF) membrane receptors.
    De Larco JE; Todaro GJ
    J Cell Physiol; 1980 Feb; 102(2):267-77. PubMed ID: 6246130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. S-180 cells secrete nerve growth factor protein similar to 7S-nerve growth factor.
    Barklis E; Perez-Polo JR
    J Neurosci Res; 1981; 6(1):21-36. PubMed ID: 7218372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of nerve growth factor responsiveness in C6-2B glioma cells by expression of trkA proto-oncogene.
    Colangelo AM; Fink DW; Rabin SJ; Mocchetti I
    Glia; 1994 Oct; 12(2):117-27. PubMed ID: 7868185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes.
    Zarnegar R; Michalopoulos G
    Cancer Res; 1989 Jun; 49(12):3314-20. PubMed ID: 2524251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGF and EGF are mitogens for immortalized neural progenitors.
    Kitchens DL; Snyder EY; Gottlieb DI
    J Neurobiol; 1994 Jul; 25(7):797-807. PubMed ID: 8089657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anchorage-independent growth-conferring factor production by rat mammary tumor cells.
    Zwiebel JA; Davis MR; Kohn E; Salomon DS; Kidwell WR
    Cancer Res; 1982 Dec; 42(12):5117-25. PubMed ID: 6291748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of retinoic acid on the binding and mitogenic activity of epidermal growth factor.
    Jetten AM
    J Cell Physiol; 1982 Mar; 110(3):235-40. PubMed ID: 6282898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and partial characterization of a hepatocyte-derived factor promoting proliferation of cultured fat-storing cells (parasinusoidal lipocytes).
    Gressner AM; Lotfi S; Gressner G; Lahme B
    Hepatology; 1992 Nov; 16(5):1250-66. PubMed ID: 1427664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nerve growth factor regulates neuroectodermal tumor cell responses to mitogenic growth factors.
    Castellon R; Mirkin BL
    J Neurosci Res; 2003 Apr; 72(2):239-49. PubMed ID: 12671999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germ cell mitogenic activity is associated with nerve growth factor-like protein(s).
    Onoda M; Pflug B; Djakiew D
    J Cell Physiol; 1991 Dec; 149(3):536-43. PubMed ID: 1744178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.