These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 6973443)

  • 1. Increased sodium content and altered sodium transport in thymocytes of spontaneously hypertensive rats.
    Jones RB; Patrick J; Hilton PJ
    Clin Sci (Lond); 1981 Sep; 61(3):313-6. PubMed ID: 6973443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Na+ and K+ contents in rat thymocytes.
    Senn N; Garay RP
    Am J Physiol; 1989 Jul; 257(1 Pt 1):C12-8. PubMed ID: 2546433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of extracellular potassium on the transport of sodium and potassium in rat thymocytes.
    Jones RB; Patrick J; Hilton PJ
    Clin Sci (Lond); 1981 Sep; 61(3):307-12. PubMed ID: 6973442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell membrane handling of sodium, sodium balance, and blood pressure.
    Swales JD; Bing RF; Bradlaugh R; El-Ashry A; Godfrey N; Heagerty AM; Thurston H
    J Cardiovasc Pharmacol; 1984; 6 Suppl 1():S42-8. PubMed ID: 6204158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rat thymocyte sodium transport. Effects of changes in sodium balance and experimental hypertension.
    Bradlaugh R; Heagerty AM; Bing RF; Swales JD; Thurston H
    Hypertension; 1984; 6(4):454-9. PubMed ID: 6746080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association of red blood cell sodium leak with blood pressure in recombinant inbred strains.
    Talib HK; Dobesová Z; Klír P; Kren V; Kunes J; Pravenec M; Zicha J
    Hypertension; 1992 Oct; 20(4):575-82. PubMed ID: 1398893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium content and sodium efflux of mononuclear leucocytes from young subjects at increased risk of developing essential hypertension.
    Pedersen KE; Nielsen JR; Klitgaard NA; Johansen T
    Am J Hypertens; 1990 Mar; 3(3):182-7. PubMed ID: 2322432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ouabain binding and Na+ content in resistance vessels and skeletal muscles of spontaneously hypertensive rats and K+-depleted rats.
    Aalkjaer C; Kjeldsen K; Nørgaard A; Clausen T; Mulvany MJ
    Hypertension; 1985; 7(2):277-86. PubMed ID: 3980071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular magnesium deficiency and effect of oral magnesium on blood pressure and red cell sodium transport in diuretic-treated hypertensive patients.
    Hattori K; Saito K; Sano H; Fukuzaki H
    Jpn Circ J; 1988 Nov; 52(11):1249-56. PubMed ID: 3225892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of captopril on intracellular free calcium ([Ca2+]i) of thymocytes in spontaneously hypertensive rats.
    Xie L; Chen D; Wu D; Wang H
    J Hum Hypertens; 1996 Jun; 10(6):425-7. PubMed ID: 8872812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of alterations in the external sodium concentration on human leucocyte sodium and potassium transport in vitro.
    Hilton PJ; Johnson VE; Jones RB; Patrick J
    J Cell Physiol; 1981 Nov; 109(2):323-32. PubMed ID: 7298732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte membrane transport in hypertensive humans and rats. Effect of sodium depletion and excess.
    Feig PU; Mitchell PP; Boylan JW
    Hypertension; 1985; 7(3 Pt 1):423-9. PubMed ID: 3997225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute sodium loading alters sodium pump in Caucasian hypertensive subjects.
    Smith JB; Fineberg NS; Wade MB; Weinberger MH
    Hypertension; 1989 Jan; 13(1):15-21. PubMed ID: 2536001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ouabain-resistant, frusemide-sensitive sodium efflux in human lymphocytes: a comparison of normotensive and hypertensive subjects.
    Montanari A; Simoni I; Sani E; Schianchi P; Borghetti A; Novarini A
    Clin Sci (Lond); 1984 Oct; 67(4):407-11. PubMed ID: 6467842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the role of sodium-potassium-activated ATPase as determinant of vascular reactivity in Wistar-Kyoto and spontaneously hypertensive rats.
    Göthberg G; Jandhyala B; Folkow B
    Clin Sci (Lond); 1980 Dec; 59 Suppl 6():187s-189s. PubMed ID: 6256113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for increased in vivo sodium-potassium pump activity and potassium efflux in skeletal muscle of spontaneously hypertensive rats.
    Syme PD; Dixon RM; Aronson JK; Grahame-Smith DG; Radda GK
    J Hypertens; 1990 Dec; 8(12):1161-6. PubMed ID: 1962807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of dietary polyunsaturated fat on cation transport and hypertension in the rat.
    Murray GE; Nair R; Patrick J
    Br J Nutr; 1986 Nov; 56(3):587-93. PubMed ID: 3676233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Na(+)/H(+) exchanger isoform 1 activity in spontaneously hypertensive rats: lack of mutations within the coding region of NHE1.
    Orlov SN; Adarichev VA; Devlin AM; Maximova NV; Sun YL; Tremblay J; Dominiczak AF; Postnov YV; Hamet P
    Biochim Biophys Acta; 2000 Feb; 1500(2):169-80. PubMed ID: 10657586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of active sodium transport in aortas from control and deoxycorticosterone hypertensive rats.
    Jones AW
    Hypertension; 1981; 3(6):631-40. PubMed ID: 7298118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacologic agents for the in vivo detection of vascular sodium transport defects in hypertension.
    Haddy FJ; Pamnani MB
    Life Sci; 1987 Dec; 41(25):2685-96. PubMed ID: 2447462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.