These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characteristics of voltage-dependent conductance in the membranes of a non-excitable tissue: the amphibian lens. Delamere NA; Duncan G; Paterson CA J Physiol; 1980 Nov; 308():49-59. PubMed ID: 6971930 [TBL] [Abstract][Full Text] [Related]
3. The influence of external potassium ions upon lens conductance characteristics investigated using a voltage clamp technique. Delamere NA; Paterson CA; Holmes DL Exp Eye Res; 1980 Dec; 31(6):651-8. PubMed ID: 6971229 [No Abstract] [Full Text] [Related]
4. The effect of tetraethylammonium on the impedance of the lens of the frog Rana pipiens [proceedings]. Duncan G; Patmore L J Physiol; 1979 Jun; 291():71P-72P. PubMed ID: 314516 [No Abstract] [Full Text] [Related]
5. Voltage-dependent potassium channels in the amphibian lens membranes: evidence from radiotracer and electrical conductance measurements. Patmore L; Duncan G Exp Eye Res; 1980 Dec; 31(6):637-50. PubMed ID: 6260521 [No Abstract] [Full Text] [Related]
6. Internal acidification modulates membrane and junctional resistance in the isolated lens of the frog Rana pipiens. Emptage NJ; Duncan G; Croghan PC Exp Eye Res; 1992 Jan; 54(1):33-9. PubMed ID: 1541338 [TBL] [Abstract][Full Text] [Related]
7. A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses. Delamere NA; Duncan G J Physiol; 1977 Oct; 272(1):167-86. PubMed ID: 304100 [TBL] [Abstract][Full Text] [Related]
8. Current-voltage relationships in the crystalline lens. Eisenberg RS; Rae JL J Physiol; 1976 Nov; 262(2):285-300. PubMed ID: 1086902 [TBL] [Abstract][Full Text] [Related]
10. The localization of transport properties in the frog lens. Mathias RT; Rae JL; Ebihara L; McCarthy RT Biophys J; 1985 Sep; 48(3):423-34. PubMed ID: 3876116 [TBL] [Abstract][Full Text] [Related]
11. Measurement of steady currents around the frog lens. Parmelee JT Exp Eye Res; 1986 May; 42(5):433-41. PubMed ID: 3487463 [TBL] [Abstract][Full Text] [Related]
13. Anomalous effects of external potassium ions upon the electrophysiological properties of the frog lens. Delamere NA; Paterson CA Exp Eye Res; 1981 Aug; 33(2):233-5. PubMed ID: 7274356 [No Abstract] [Full Text] [Related]
14. Observations on high and low voltage compartments in the crystalline lens of the frog. Delamere NA; Paterson CA Exp Eye Res; 1979 Nov; 29(5):555-61. PubMed ID: 316775 [No Abstract] [Full Text] [Related]
15. Link between the ciliary process and lens equatorial current. Walsh SP; Sullivan J; Patterson JW Lens Eye Toxic Res; 1992; 9(2):127-38. PubMed ID: 1596477 [TBL] [Abstract][Full Text] [Related]
16. A TEA-sensitive component in the conductance of a non-excitable tissue (the amphibian lens). Patmore L; Duncan G Exp Eye Res; 1979 Mar; 28(3):349-52. PubMed ID: 312210 [No Abstract] [Full Text] [Related]
17. Electrical coupling between fibre cells in amphibian and cephalopod lenses. Jacob TJ; Duncan G Nature; 1981 Apr; 290(5808):704-6. PubMed ID: 6971413 [TBL] [Abstract][Full Text] [Related]
18. Steady state voltages in the frog lens. Mathias RT; Rae JL Curr Eye Res; 1985 Apr; 4(4):421-30. PubMed ID: 4017633 [TBL] [Abstract][Full Text] [Related]
19. Physiological role of the membranes and extracellular space with the ocular lens. Rae JL; Mathias RT; Eisenberg RS Exp Eye Res; 1982 Nov; 35(5):471-89. PubMed ID: 6983449 [No Abstract] [Full Text] [Related]
20. Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. Cleemann L; Morad M J Physiol; 1979 Jan; 286():113-43. PubMed ID: 312318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]