These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 6974740)

  • 1. Effects of fatigue and altered pH on isometric force and velocity of shortening at zero load in frog muscle fibres.
    Edman KA; Mattiazzi AR
    J Muscle Res Cell Motil; 1981 Sep; 2(3):321-34. PubMed ID: 6974740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres.
    Edman KA
    J Physiol; 1979 Jun; 291():143-59. PubMed ID: 314510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in maximum velocity of shortening along single muscle fibres of the frog.
    Edman KA; Reggiani C; te Kronnie G
    J Physiol; 1985 Aug; 365():147-63. PubMed ID: 3875712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in force and stiffness induced by fatigue and intracellular acidification in frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1990 May; 424():133-49. PubMed ID: 2391650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Force-velocity relation in deuterium oxide-treated frog single muscle fibres during the rise of tension in an isometric tetanus.
    Cecchi G; Colomo F; Lombardi V
    J Physiol; 1981 Aug; 317():207-21. PubMed ID: 6273545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes of the force-velocity relation, isometric tension and relaxation rate during fatigue in intact, single fibres of Xenopus skeletal muscle.
    Westerblad H; Lännergren J
    J Muscle Res Cell Motil; 1994 Jun; 15(3):287-98. PubMed ID: 7929794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-velocity relation for frog muscle fibres: effects of moderate fatigue and of intracellular acidification.
    Curtin NA; Edman KA
    J Physiol; 1994 Mar; 475(3):483-94. PubMed ID: 8006830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-velocity relation and stiffness in frog single muscle fibres during the rise of tension in an isometric tetanus.
    Lorenzini CA; Colomo F; Lombardi V
    Adv Exp Med Biol; 1984; 170():757-64. PubMed ID: 6611041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of force-velocity relation, stiffness and isometric tension in frog single muscle fibres.
    Ambrogi-Lorenzini C; Colomo F; Lombardi V
    J Muscle Res Cell Motil; 1983 Apr; 4(2):177-89. PubMed ID: 6602810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of tetanic force induced by loaded shortening of frog muscle fibres.
    Edman KA; Caputo C; Lou F
    J Physiol; 1993 Jul; 466():535-52. PubMed ID: 8410705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fatigue and reduced intracellular pH on segment dynamics in 'isometric' relaxation of frog muscle fibres.
    Curtin NA; Edman KA
    J Physiol; 1989 Jun; 413():159-74. PubMed ID: 2600846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of force rise time during isometric contraction of frog muscle fibres.
    Edman KA; Josephson RK
    J Physiol; 2007 May; 580(Pt.3):1007-19. PubMed ID: 17303645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA; Reggiani C; Schiaffino S; te Kronnie G
    J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of active pre-shortening on isometric and isotonic performance of single frog muscle fibres.
    Granzier HL; Pollack GH
    J Physiol; 1989 Aug; 415():299-327. PubMed ID: 2640463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism underlying double-hyperbolic force-velocity relation in vertebrate skeletal muscle.
    Edman KA
    Adv Exp Med Biol; 1993; 332():667-76; discussion 676-8. PubMed ID: 8109377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser diffraction studies of sarcomere dynamics during 'isometric' relaxation in isolated muscle fibres of the frog.
    Edman KA; Flitney FW
    J Physiol; 1982 Aug; 329():1-20. PubMed ID: 6982971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue in frog skeletal muscle fibres and effects of methylxanthine derivatives.
    Khan AR; Bengtsson B
    Acta Physiol Scand; 1985 May; 124(1):35-41. PubMed ID: 3874523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The maximum speed of shortening in living and skinned frog muscle fibres.
    Julian FJ; Rome LC; Stephenson DG; Striz S
    J Physiol; 1986 Jan; 370():181-99. PubMed ID: 3485715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length-tension-velocity relationships studied in short consecutive segments of intact muscle fibres of the frog.
    Edman KA; Reggiani C
    Adv Exp Med Biol; 1984; 170():495-509. PubMed ID: 6611031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.