These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 6974740)

  • 61. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.
    Julian FJ
    J Physiol; 1971 Oct; 218(1):117-45. PubMed ID: 5316143
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The effects of pH on the kinetics of fatigue and recovery in frog sartorius muscle.
    Renaud JM; Mainwood GW
    Can J Physiol Pharmacol; 1985 Nov; 63(11):1435-43. PubMed ID: 3878223
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.
    Edman KA
    Acta Physiol Scand; 1980 May; 109(1):15-26. PubMed ID: 6969530
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The high-force region of the force-velocity relation in frog skinned muscle fibres.
    Lou F; Sun YB
    Acta Physiol Scand; 1993 Jul; 148(3):243-52. PubMed ID: 8213180
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fatigue vs. shortening-induced deactivation in striated muscle.
    Edman KA
    Acta Physiol Scand; 1996 Mar; 156(3):183-92. PubMed ID: 8729678
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Birefringence changes associated with isometric contraction and rapid shortening steps in frog skeletal muscle fibres.
    Irving M
    J Physiol; 1993 Dec; 472():127-56. PubMed ID: 8145138
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stable maintenance heat rate and contractile properties of different single muscle fibres from Xenopus laevis at 20 degrees C.
    Elzinga G; Lännergren J; Stienen GJ
    J Physiol; 1987 Dec; 393():399-412. PubMed ID: 3446801
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Variation of muscle stiffness with tension during tension transients and constant velocity shortening in the frog.
    Julian FJ; Morgan DL
    J Physiol; 1981; 319():193-203. PubMed ID: 6976429
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The stiffness under isotonic releases during a twitch of a frog muscle fibre.
    Haugen P
    Adv Exp Med Biol; 1988; 226():461-71. PubMed ID: 3261490
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Slowing of relaxation during fatigue in single mouse muscle fibres.
    Westerblad H; Lännergren J
    J Physiol; 1991 Mar; 434():323-36. PubMed ID: 1902516
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature.
    Westerblad H; Bruton JD; Lännergren J
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):193-204. PubMed ID: 9097943
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The development of the force-velocity relation in normal and dantrolene-treated frog single muscle fibres.
    Cecchi G; Colomo F; Piazzesi G
    J Muscle Res Cell Motil; 1983 Aug; 4(4):395-404. PubMed ID: 6605365
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of tetanus duration on the free calcium during the relaxation of frog skeletal muscle fibres.
    Cannell MB
    J Physiol; 1986 Jul; 376():203-18. PubMed ID: 3491901
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of intracellular pH on force and heat production in isometric contraction of frog muscle fibres.
    Curtin NA; Kometani K; Woledge RC
    J Physiol; 1988 Feb; 396():93-104. PubMed ID: 3137330
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Contraction kinetics of intact and skinned frog muscle fibers and degree of activation. Effects of intracellular Ca2+ on unloaded shortening.
    Gulati J; Babu A
    J Gen Physiol; 1985 Oct; 86(4):479-500. PubMed ID: 3877145
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The force bearing capacity of frog muscle fibres during stretch: its relation to sarcomere length and fibre width.
    Edman KA
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):515-26. PubMed ID: 10457067
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Force-velocity and unloaded shortening velocity during graded potassium contractures in frog skeletal muscle fibres.
    Colomo F; Pizza L; Scialpi A
    J Muscle Res Cell Motil; 2000 Jan; 21(1):9-19. PubMed ID: 10813631
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The maximum velocity of shortening during the early phases of the contraction in frog single muscle fibres.
    Lombardi V; Menchetti G
    J Muscle Res Cell Motil; 1984 Oct; 5(5):503-13. PubMed ID: 6334695
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.