BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 6975619)

  • 1. The activity of creatine kinase in frog skeletal muscle studied by saturation-transfer nuclear magnetic resonance.
    Gadian DG; Radda GK; Brown TR; Chance EM; Dawson MJ; Wilkie DR
    Biochem J; 1981 Jan; 194(1):215-28. PubMed ID: 6975619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance.
    Conrad A; Gruwel ML; Soboll S
    Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anaerobic metabolic changes on the creatine kinase reaction in frog muscle studied by 31P saturation transfer NMR.
    Yoshizaki K; Nishikawa H; Naruse S
    NMR Biomed; 1991 Feb; 4(1):25-30. PubMed ID: 2029457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR.
    Yoshizaki K; Watari H; Radda GK
    Biochim Biophys Acta; 1990 Feb; 1051(2):144-50. PubMed ID: 2310769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle.
    Shoubridge EA; Bland JL; Radda GK
    Biochim Biophys Acta; 1984 Sep; 805(1):72-8. PubMed ID: 6477973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H- and 31P-NMR studies on smooth muscle of bullfrog stomach.
    Yoshizaki K; Radda GK; Inubushi T; Chance B
    Biochim Biophys Acta; 1987 Apr; 928(1):36-44. PubMed ID: 3493810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of inversion spin transfer to monitor creatine kinase kinetics in rat skeletal muscle in vivo.
    Haseler LJ; Brooks WM; Irving MG; Bulliman BT; Kuchel PW; Doddrell DM
    Biochem Int; 1986 Apr; 12(4):613-8. PubMed ID: 3718523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creatine kinase activity in rat skeletal muscle with intermittent tetanic stimulation.
    Le Rumeur E; Le Moyec L; de Certaines JD
    Magn Reson Med; 1992 Apr; 24(2):335-42. PubMed ID: 1569871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of energy flux through the creatine kinase reaction in vitro and in perfused rat heart. 31P-NMR studies.
    Kupriyanov VV; Ya Steinschneider A; Ruuge EK; Kapel'ko VI; Yu Zueva M; Lakomkin VL; Smirnov VN; Saks VA
    Biochim Biophys Acta; 1984 Dec; 805(4):319-31. PubMed ID: 6509089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical model of compartmentalized energy transfer: its use for analysis and interpretation of 31P-NMR studies of isolated heart of creatine kinase deficient mice.
    Aliev MK; van Dorsten FA; Nederhoff MG; van Echteld CJ; Veksler V; Nicolay K; Saks VA
    Mol Cell Biochem; 1998 Jul; 184(1-2):209-29. PubMed ID: 9746323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of creatine kinase in an experimental model of low phosphocreatine and ATP in the normoxic heart.
    Stepanov V; Mateo P; Gillet B; Beloeil JC; Lechene P; Hoerter JA
    Am J Physiol; 1997 Oct; 273(4):C1397-408. PubMed ID: 9357786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer.
    Rees D; Smith MB; Harley J; Radda GK
    Magn Reson Med; 1989 Jan; 9(1):39-52. PubMed ID: 2709995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of compartmentation of ATP in skeletal and cardiac muscle using 31P nuclear magnetic resonance saturation transfer.
    Zahler R; Bittl JA; Ingwall JS
    Biophys J; 1987 Jun; 51(6):883-93. PubMed ID: 3607210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [ATP-phosphocreatine metabolism catalyzed by creatine kinase. Comparison of saturation transfer (NMR) and isotope labeling technics].
    Kupriianov VV; Liulina NV; Shteĭnshneĭder AIa; Zueva MIu; Saks VA
    Bioorg Khim; 1987 Mar; 13(3):300-8. PubMed ID: 3593427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of in vivo catalysis by creatine kinase in avian skeletal muscles with different fibre composition.
    Smith MB; Briggs RW; Shoubridge EA; Hayes DJ; Radda GK
    Biochim Biophys Acta; 1985 Jul; 846(1):174-8. PubMed ID: 4016154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM; Bland JL; Gadian DG; Radda GK
    Biochim Biophys Acta; 1982 Nov; 721(3):312-20. PubMed ID: 7171631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P-saturation-transfer nuclear-magnetic-resonance measurements of phosphocreatine turnover in guinea-pig brain slices.
    Morris PG; Feeney J; Cox DW; Bachelard HS
    Biochem J; 1985 May; 227(3):777-82. PubMed ID: 4004799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creatine kinase-catalyzed ATP-phosphocreatine exchange: comparison of 31P-NMR saturation transfer technique and radioisotope tracer methods.
    Kupriyanov VV; Lyulina NV; Steinschneider AYa ; Zueva MYu ; Saks VA
    FEBS Lett; 1986 Nov; 208(1):89-93. PubMed ID: 3770212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S; Carr LJ; Kreutzer U; Jue T
    Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.