These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 6976425)

  • 1. Effect of muscle length on energy balance in frog skeletal muscle.
    Curtin NA; Woledge RC
    J Physiol; 1981 Jul; 316():453-68. PubMed ID: 6976425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The different muscle-energetics during shortening and stretch.
    Jarosch R
    Int J Mol Sci; 2011; 12(5):2891-900. PubMed ID: 21686156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of muscle contraction: further trials.
    Yamada K
    J Physiol Sci; 2017 Jan; 67(1):19-43. PubMed ID: 27412384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency and cross-bridge work output of skeletal muscle is decreased at low levels of activation.
    Lewis DB; Barclay CJ
    Pflugers Arch; 2014 Mar; 466(3):599-609. PubMed ID: 24013759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale models reveal the two-component mechanics of striated muscle.
    Jarosch R
    Int J Mol Sci; 2008 Dec; 9(12):2658-2723. PubMed ID: 19330099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy turnover for Ca2+ cycling in skeletal muscle.
    Barclay CJ; Woledge RC; Curtin NA
    J Muscle Res Cell Motil; 2007; 28(4-5):259-74. PubMed ID: 17882515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin energy turnover declines while force remains constant during isometric muscle contraction.
    West TG; Curtin NA; Ferenczi MA; He ZH; Sun YB; Irving M; Woledge RC
    J Physiol; 2004 Feb; 555(Pt 1):27-43. PubMed ID: 14565999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of cross-bridge stiffness from maximum thermodynamic efficiency.
    Barclay CJ
    J Muscle Res Cell Motil; 1998 Nov; 19(8):855-64. PubMed ID: 10047985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force-dependent and force-independent heat production in single slow- and fast-twitch muscle fibres from Xenopus laevis.
    Buschman HP; van der Laarse WJ; Stienen GJ; Elzinga G
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):503-19. PubMed ID: 8910233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat production by single fibres of frog muscle.
    Curtin NA; Howarth JV; Woledge RC
    J Muscle Res Cell Motil; 1983 Apr; 4(2):207-22. PubMed ID: 6602811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetics of activation in frog skeletal muscle at sarcomere lengths beyond myofilament overlap.
    Burchfield DM; Rall JA
    Biophys J; 1985 Dec; 48(6):1049-51. PubMed ID: 3879188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repriming and reversal of the isometric unexplained enthalpy in frog skeletal muscle.
    Homsher E; Lacktis J; Yamada T; Zohman G
    J Physiol; 1987 Dec; 393():157-70. PubMed ID: 3502266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absolute values of myothermic measurements on single muscle fibres from frog.
    Curtin NA; Howarth JV; Rall JA; Wilson MG; Woledge RC
    J Muscle Res Cell Motil; 1986 Aug; 7(4):327-32. PubMed ID: 3489734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature dependence of the crossbridge cycle during unloaded shortening and maximum isometric tetanus in frog skeletal muscle.
    Burchfield DM; Rall JA
    J Muscle Res Cell Motil; 1986 Aug; 7(4):320-6. PubMed ID: 3489733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat changes during transient tension responses to small releases in active frog muscle.
    Gilbert SH; Ford LE
    Biophys J; 1988 Oct; 54(4):611-7. PubMed ID: 3265639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High energy phosphate utilization for work production and tension maintenance in frog muscle.
    Cerretelli P; di Prampero PE
    Pflugers Arch; 1988 Aug; 412(3):270-6. PubMed ID: 3263619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intracellular pH on force and heat production in isometric contraction of frog muscle fibres.
    Curtin NA; Kometani K; Woledge RC
    J Physiol; 1988 Feb; 396():93-104. PubMed ID: 3137330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of carbon dioxide and tetanus duration on relaxation of frog skeletal muscle.
    Curtin NA
    J Muscle Res Cell Motil; 1986 Jun; 7(3):269-75. PubMed ID: 3090099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of isometric force, maximum power and isometric heat rate as a function of sarcomere length in mouse skeletal muscle.
    Phillips SK; Woledge RC
    Pflugers Arch; 1992 Apr; 420(5-6):578-83. PubMed ID: 1614833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvalbumin, labile heat and slowing of relaxation in mouse soleus and extensor digitorum longus muscles.
    Berquin A; Lebacq J
    J Physiol; 1992 Jan; 445():601-16. PubMed ID: 1501147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.