These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 697652)

  • 1. Place and time coding of frequency in the peripheral auditory system: some physiological pros and cons.
    Evans EF
    Audiology; 1978; 17(5):369-420. PubMed ID: 697652
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms of signal analysis and pattern perception in periodicity pitch.
    Goldstein JL
    Audiology; 1978; 17(5):421-45. PubMed ID: 697653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuroanatomy, neurophysiology, and central auditory assessment. Part I: Brain stem.
    Musiek FE; Baran JA
    Ear Hear; 1986 Aug; 7(4):207-19. PubMed ID: 3743912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones.
    Kim DO; Molnar CE
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):16-30. PubMed ID: 430109
    [No Abstract]   [Full Text] [Related]  

  • 5. Music perception, pitch, and the auditory system.
    McDermott JH; Oxenham AJ
    Curr Opin Neurobiol; 2008 Aug; 18(4):452-63. PubMed ID: 18824100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of frequency discrimination with optimal processing of auditory nerve spike intervals.
    Hanekom JJ; Krüger JJ
    Hear Res; 2001 Jan; 151(1-2):188-204. PubMed ID: 11124465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a pitch perception model to investigate the effect of stimulation field spread on the pitch ranking abilities of cochlear implant recipients.
    Erfanian Saeedi N; Blamey PJ; Burkitt AN; Grayden DB
    Hear Res; 2014 Oct; 316():129-37. PubMed ID: 25193552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Responses of neurons in the cochlear nuclei of sharp-eared bats to presentation of simultaneous ultrasonic stimuli].
    Vasil'ev AG; Vinogradova EP
    Neirofiziologiia; 1978; 10(3):252-60. PubMed ID: 673072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using individual differences to test the role of temporal and place cues in coding frequency modulation.
    Whiteford KL; Oxenham AJ
    J Acoust Soc Am; 2015 Nov; 138(5):3093-104. PubMed ID: 26627783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus.
    Jiang D; Palmer AR; Winter IM
    J Neurophysiol; 1996 Jan; 75(1):380-95. PubMed ID: 8822565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. V. Pure-tone intensity discrimination.
    Igarashi M; Cranford JL; Allen EA; Alford BR
    Acta Otolaryngol; 1979; 87(5-6):429-33. PubMed ID: 463513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal response patterns in populations of cochlear nerve fibers: single- and two-tone studies.
    Kim DO
    Ann N Y Acad Sci; 1983; 405():68-78. PubMed ID: 6575673
    [No Abstract]   [Full Text] [Related]  

  • 14. Lateral suppression and inhibition in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 Feb; 71(2):493-514. PubMed ID: 8176421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a compressive nonlinearity in a cochlear model.
    Geisler CD
    J Acoust Soc Am; 1985 Jul; 78(1 Pt 1):257-60. PubMed ID: 2991354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hair cell lesions on responses of cochlear nerve fibers. I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns.
    Schmiedt RA; Zwislocki JJ; Hamernik RP
    J Neurophysiol; 1980 May; 43(5):1367-89. PubMed ID: 7373368
    [No Abstract]   [Full Text] [Related]  

  • 17. Stimulation studies in the descending auditory pathway.
    Glenn JF; Oatman LC
    Brain Res; 1980 Aug; 196(1):258-61. PubMed ID: 7397525
    [No Abstract]   [Full Text] [Related]  

  • 18. A New Approach to Model Pitch Perception Using Sparse Coding.
    Barzelay O; Furst M; Barak O
    PLoS Comput Biol; 2017 Jan; 13(1):e1005338. PubMed ID: 28099436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.
    Trainor LJ; Marie C; Bruce IC; Bidelman GM
    Hear Res; 2014 Feb; 308():60-70. PubMed ID: 23916754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral auditory function after transection of crossed olivo-cochlear bundle in the cat. IV. Study on pure-tone frequency discrimination.
    Igarashi M; Cranford JL; Nakai Y; Alford BR
    Acta Otolaryngol; 1979; 87(1-2):79-83. PubMed ID: 760381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.