These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6977537)

  • 41. The reconstitution of energy transfer in membranes from a bacteriochlorophyll-less mutant of Rhodopseudomonas sphaeroides by addition of light-harvesting and reaction centre pigment-protein complexes.
    Hunter CN; van Grondelle R; Holmes NG; Jones OT
    Biochim Biophys Acta; 1979 Dec; 548(3):458-70. PubMed ID: 315797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell-cycle-specific fluctuation in cytoplasmic membrane composition in aerobically grown Rhodospirillum rubrum.
    Myers CR; Collins ML
    J Bacteriol; 1987 Dec; 169(12):5445-51. PubMed ID: 3119564
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phospholipid composition of the plasma membrane of the green alga, Hydrodictyon africanum.
    Bailey DS; Northcote DH
    Biochem J; 1976 May; 156(2):295-300. PubMed ID: 182144
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phospholipids and fatty acids of Neisseria gonorrhoeae.
    Sud IJ; Feingold DS
    J Bacteriol; 1975 Nov; 124(2):713-7. PubMed ID: 810478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Levels and distributions of phospholipids and cholesterol in the plasma membrane of neuroblastoma cells.
    Charalampous FC
    Biochim Biophys Acta; 1979 Sep; 556(1):38-51. PubMed ID: 476118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure of Escherichia coli membranes. Glycerol auxotrophs as a tool for the analysis of the phospholipid head-group region by deuterium magentic resonance.
    Gally HU; Pluschke G; Overath P; Seelig J
    Biochemistry; 1981 Mar; 20(7):1826-31. PubMed ID: 7013803
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localization of phospholipid biosynthetic enzyme activities in cell-free fractions derived from Rhodopseudomonas sphaeroides.
    Cain BD; Donohue TJ; Shepherd WD; Kaplan S
    J Biol Chem; 1984 Jan; 259(2):942-8. PubMed ID: 6319391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phospholipid composition and phospholipase A activity of Neisseria gonorrhoeae.
    Senff LM; Wegener WS; Brooks GF; Finnerty WR; Makula RA
    J Bacteriol; 1976 Aug; 127(2):874-80. PubMed ID: 821921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. Distribution of EIIFru over the membranes of phototrophically grown Rps. sphaeroides.
    Lolkema JS; ten Hoeve-Duurkens RH; Robillard GT
    Eur J Biochem; 1986 Nov; 161(1):211-5. PubMed ID: 3023083
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides.
    Satoh T; Hoshino Y; Kitamura H
    Arch Microbiol; 1976 Jul; 108(3):265-9. PubMed ID: 1085137
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of radiotherapy and chemotherapy on composition of tumor membrane phospholipids.
    Street JC; Koutcher JA
    Lipids; 1997 Jan; 32(1):45-9. PubMed ID: 9075192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of cerulenin on macromolecule synthesis in chemoheterotrophically and photoheterotrophically grown Rhodopseudomonas sphaeroides.
    Shepherd WD; Kaplan S
    J Bacteriol; 1983 Dec; 156(3):1322-31. PubMed ID: 6196350
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and characterization of an N-acylphosphatidylserine from Rhodopseudomonas sphaeroides.
    Donohue TJ; Cain BD; Kaplan S
    Biochemistry; 1982 May; 21(11):2765-73. PubMed ID: 6980013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phospholipid-enriched bacterial chromatophores. A system suited to investigate the ubiquinone-mediated interactions of protein complexes in photosynthetic oxidoreduction processes.
    Casadio R; Venturoli G; Di Gioia A; Castellani P; Leonardi L; Melandri BA
    J Biol Chem; 1984 Jul; 259(14):9149-57. PubMed ID: 6378907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Partition of parinaroylphosphatidylethanolamines and parinaroylphosphatidylglycerols in immiscible phospholipid mixtures.
    Martin LR; Avery RB; Welti R
    Biochim Biophys Acta; 1990 Apr; 1023(3):383-8. PubMed ID: 2185844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of apparent membrane growth initiation sites during photosynthetic membrane development in synchronously dividing Rhodopseudomonas sphaeroides.
    Reilly PA; Niederman RA
    J Bacteriol; 1986 Jul; 167(1):153-9. PubMed ID: 3522542
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neutron scattering studies of photosynthetic membranes in aqueous dispersion.
    Sadler DM; Worcester DL
    J Mol Biol; 1982 Aug; 159(3):485-99. PubMed ID: 6984710
    [No Abstract]   [Full Text] [Related]  

  • 58. Effect of aerobic growth conditions on the soluble cytochrome content of the purple phototrophic bacterium Rhodobacter sphaeroides: induction of cytochrome c554.
    Bartsch RG; Ambler RP; Meyer TE; Cusanovich MA
    Arch Biochem Biophys; 1989 Jun; 271(2):433-40. PubMed ID: 2543295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides.
    Chory J; Kaplan S
    J Bacteriol; 1983 Jan; 153(1):465-74. PubMed ID: 6600232
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic analysis of N-acylphosphatidylserine accumulation and implications for membrane assembly in Rhodopseudomonas sphaeroides.
    Cain BD; Donohue TJ; Kaplan S
    J Bacteriol; 1982 Nov; 152(2):607-15. PubMed ID: 6982265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.