These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 697756)

  • 1. Phosphorylation of adenosine monophosphate in the mitochondrial matrix.
    Krebs HA; Wiggins D
    Biochem J; 1978 Jul; 174(1):297-301. PubMed ID: 697756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of acetate, propionate and butyrate in sheep liver mitochondria.
    Smith RM
    Biochem J; 1971 Oct; 124(5):877-81. PubMed ID: 5131011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fuel of respiration of rat kidney cortex.
    Weidemann MJ; Krebs HA
    Biochem J; 1969 Apr; 112(2):149-66. PubMed ID: 5805283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in intramitochondrial adenine nucleotides in blowfly flight-muscle mitochondria.
    Danks SM; Chappell JB
    Biochem J; 1974 Aug; 142(2):353-8. PubMed ID: 4374197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of guanine nucleotides in isolated heart mitochondria.
    McKee EE; Bentley AT; Smith RM; Ciaccio CE
    Biochem Biophys Res Commun; 1999 Apr; 257(2):466-72. PubMed ID: 10198236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic regulation of ATP breakdown and of adenosine production in rat brain extracts.
    Barsotti C; Ipata PL
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2214-25. PubMed ID: 15313467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on medium-chain fatty acyl-coenzyme a synthetase. Purification and properties.
    Bar-Tana J; Rose G; Shapiro B
    Biochem J; 1968 Sep; 109(2):269-74. PubMed ID: 5679368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids.
    Brass EP; Beyerinck RA
    Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of a free acyl adenylate during the activation of 2-propylpentanoic acid. Valproyl-AMP: a novel cellular metabolite of valproic acid.
    Mao LF; Millington DS; Schulz H
    J Biol Chem; 1992 Feb; 267(5):3143-6. PubMed ID: 1737769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversibility of the pyrophosphoryl transfer from ATP to GTP by Escherichia coli stringent factor.
    Sy J
    Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3470-3. PubMed ID: 4372621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of hexokinase and tricarboxylic acid-cycle intermediates on fatty acid oxidation and formation of ketone bodies by rat-liver mitochondria.
    Hird FJ; Symons RH; Weidemann MJ
    Biochem J; 1966 Feb; 98(2):389-93. PubMed ID: 5944642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition by a polyanion (dextran sulfate) of activation of respiration of isolated rat-liver mitochondria by AMP and ADP.
    Ogata E; Kondo K
    J Biochem; 1972 Mar; 71(3):423-34. PubMed ID: 5033873
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphorylated adenosine derivatives as low-affinity adenosine-receptor agonists. Methodological implications for the adenylate cyclase assay.
    Schütz W; Steurer G; Tuisl E; Plass H
    Biochem J; 1984 May; 220(1):207-12. PubMed ID: 6331407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cadmium on changes in concentration of adenine nucleotides induced by mitochondria.
    Ogata M; Hasegawa T; Yamazaki Y; Nogami Y
    Acta Med Okayama; 1978 Dec; 32(6):387-92. PubMed ID: 154823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of adenosine 3'-monophosphate in rat liver mitochondria.
    Fujimori H; Pan-Hou H
    Biol Pharm Bull; 1998 Jun; 21(6):624-7. PubMed ID: 9657050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific and rapid method for determination of adenosine 3'-monophosphate (3'-AMP) content and 3'-AMP forming enzyme activity in rat liver mitochondria, using reversed-phase HPLC with fluorescence detection.
    Fujimori H; Sato R; Yasuda M; Pan-Hou H
    Biol Pharm Bull; 1998 Dec; 21(12):1348-51. PubMed ID: 9881652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Formation of active acyl compounds and oxidative phosphorylation in the rat liver mitochondria].
    Yamanaka N
    Seikagaku; 1971; 43(10):891-7. PubMed ID: 5169749
    [No Abstract]   [Full Text] [Related]  

  • 19. Elevation by ethanol and its metabolites of liver adenosine monophosphate.
    Lindros KO; Kivikataja RL; Suokas A
    Alcohol; 1986; 3(1):63-7. PubMed ID: 3964439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in hepatic energy metabolism in experimental acute pancreatitis.
    Yan LN; Ozawa K; Kobayashi N
    Chin Med J (Engl); 1992 Aug; 105(8):684-8. PubMed ID: 1458973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.