These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 697811)
1. Carbon-13 NMR studies of C2H5N13C bound to hemoproteins - evidence for a different distal proteic environment in beta-chains either isolated or within human hemoglobin. Mansuy D; Thillet J; Cendrier B; Lallemand JY; Chottard JC Biochem Biophys Res Commun; 1978 Jul; 83(1):217-25. PubMed ID: 697811 [No Abstract] [Full Text] [Related]
2. Carbon-13 NMR studies of C2H5N13C binding to various hemoproteins. Mansuy D; Lallemand JY; Chottard JC; Cendrier B Biochem Biophys Res Commun; 1976 May; 70(2):595-9. PubMed ID: 945739 [No Abstract] [Full Text] [Related]
4. States of hemoglobin in solution. Ogata RT; McConnell HM Biochemistry; 1972 Dec; 11(25):4792-9. PubMed ID: 4347702 [No Abstract] [Full Text] [Related]
5. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket. Takahashi S; Lin AK; Ho C Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448 [TBL] [Abstract][Full Text] [Related]
6. A new mode for heme-heme interactions in hemoglobin associated with distal perturbations. Levy A; Sharma VS; Zhang L; Rifkind JM Biophys J; 1992 Mar; 61(3):750-5. PubMed ID: 1324020 [TBL] [Abstract][Full Text] [Related]
7. Phosphines as a new structural probe of hemoglobin. 1H-NMR evidence for perturbations in the beta heme pocket induced by a thiol reagent. Bondon A; Sodano P; Simonneaux G; Craescu CT Biochim Biophys Acta; 1987 Aug; 914(3):289-93. PubMed ID: 3620477 [TBL] [Abstract][Full Text] [Related]
8. The effect of ligand size and stereochemistry on the reactivity of the alpha and beta chains within hemoglobin. Olson JS; Binger C Biochim Biophys Acta; 1976 Jun; 434(2):428-39. PubMed ID: 952895 [TBL] [Abstract][Full Text] [Related]
9. CD studies on the reversed heme orientation in monomeric Glycera dibranchiata hemoglobins. Santucci R; Mintorovitch J; Constantinidis I; Satterlee JD; Ascoli F Biochim Biophys Acta; 1988 Mar; 953(2):201-4. PubMed ID: 3349089 [TBL] [Abstract][Full Text] [Related]
10. 31P chemical shifts as structural probes for heme environments. 31P-NMR study of the binding of trimethyl phosphine to various hemoglobins and myoglobins. Bondon A; Petrinko P; Sodano P; Simonneaux G Biochim Biophys Acta; 1986 Jul; 872(1-2):163-6. PubMed ID: 3730395 [TBL] [Abstract][Full Text] [Related]
11. 1H-NMR heme resonance assignments by selective deuteration in low-spin complexes of ferric hemoglobin A. La Mar GN; Jue T; Nagai K; Smith KM; Yamamoto Y; Kauten RJ; Thanabal V; Langry KC; Pandey RK; Leung HK Biochim Biophys Acta; 1988 Jan; 952(2):131-41. PubMed ID: 3337821 [TBL] [Abstract][Full Text] [Related]
12. Nuclear magnetic resonance studies of hemoglobins. 8. Evidence for preferential ligand binding to chains within deoxyhemoglobins. Linstrom TR; Olson JS; Mock NH; Gibson QH; Ho C Biochem Biophys Res Commun; 1971 Oct; 45(1):22-6. PubMed ID: 5139924 [No Abstract] [Full Text] [Related]
13. Nuclear magnetic resonance study of heme-heme interaction in hemoglobin M Milwaukee: implications concerning the mechanism of cooperative ligand binding in normal hemoglobin. Fung LW; Minton AP; Ho C Proc Natl Acad Sci U S A; 1976 May; 73(5):1581-5. PubMed ID: 1064027 [TBL] [Abstract][Full Text] [Related]
14. Carbon-13 nuclear magnetic resonance study of the motional behavior of ethyl isocyanide bound to myoglobin and hemoglobin. Gilman JG Biochemistry; 1979 May; 18(11):2273-9. PubMed ID: 444455 [No Abstract] [Full Text] [Related]
15. Correlation between quaternary structure and ligand dissociation kinetics for fully liganded hemoglobin. Salhany JM; Ogawa S; Shulman RG Biochemistry; 1975 May; 14(10):2180-90. PubMed ID: 167803 [TBL] [Abstract][Full Text] [Related]
16. The role of hemoglobin heme loss in Heinz body formation: studies with a partially heme-deficient hemoglobin and with genetically unstable hemoglobins. Jacob HS; Winterhalter KH J Clin Invest; 1970 Nov; 49(11):2008-16. PubMed ID: 5475984 [TBL] [Abstract][Full Text] [Related]
17. High resolution proton magnetic resonance study of the two quaternary states in fully ligated hemoglobin Kansas. Ogawa S; Mayer A; Shulman RG Biochem Biophys Res Commun; 1972 Dec; 49(6):1485-91. PubMed ID: 4639808 [No Abstract] [Full Text] [Related]
18. Anomalous pH dependence of the heme-bound carbon monoxide spectroscopic properties in the Glycera dibranchiata monomer hemoglobin fraction compared to vertebrate hemoglobins. Satterlee JD Biochim Biophys Acta; 1984 Dec; 791(3):384-94. PubMed ID: 6518167 [TBL] [Abstract][Full Text] [Related]
19. Contributions of asparagine at alpha 97 to the cooperative oxygenation process of hemoglobin. Kim HW; Shen TJ; Ho NT; Zou M; Tam MF; Ho C Biochemistry; 1996 May; 35(21):6620-7. PubMed ID: 8639610 [TBL] [Abstract][Full Text] [Related]
20. Effects of phosphate upon CO binding kinetics and NMR spectra of hemoglobin valency hybrids. Cassoly R; Gibson QH; Ogawa S; Shulman RG Biochem Biophys Res Commun; 1971 Sep; 44(5):1015-21. PubMed ID: 5160395 [No Abstract] [Full Text] [Related] [Next] [New Search]